Predicting the VIX and the Volatility Risk Premium: What's Credit and Commodity Volatility Risk Got To Do With It?
Eric Ghysels and
Elena Andreou
No 10236, CEPR Discussion Papers from C.E.P.R. Discussion Papers
Abstract:
This paper presents an innovative approach to extracting factors which are shown to predict the VIX, the S&P 500 Realized Volatility and the Variance Risk Premium. The approach is innovative along two different dimensions, namely: (1) we extract factors from panels of filtered volatilities - in particular large panels of univariate financial asset ARCH-type models and (2) we price equity volatility risk using factors which go beyond the equity class. These are volatility factors extracted from panels of volatilities of short-term funding and long-run corporate spreads as well as volatilities of energy and metals commodities returns and sport/future spreads.
Keywords: Factor asset pricing models; Arch filters (search for similar items in EconPapers)
JEL-codes: C2 C5 G1 (search for similar items in EconPapers)
Date: 2014-11
New Economics Papers: this item is included in nep-for and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2) Track citations by RSS feed
Downloads: (external link)
https://cepr.org/publications/DP10236 (application/pdf)
CEPR Discussion Papers are free to download for our researchers, subscribers and members. If you fall into one of these categories but have trouble downloading our papers, please contact us at subscribers@cepr.org
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cpr:ceprdp:10236
Ordering information: This working paper can be ordered from
https://cepr.org/publications/DP10236
Access Statistics for this paper
More papers in CEPR Discussion Papers from C.E.P.R. Discussion Papers Centre for Economic Policy Research, 33 Great Sutton Street, London EC1V 0DX.
Bibliographic data for series maintained by ().