[go: up one dir, main page]

  EconPapers    
Economics at your fingertips  
 

Strong Approximations for Empirical Processes Indexed by Lipschitz Functions

Matias Cattaneo and Ruiqi Rae Yu

Papers from arXiv.org

Abstract: This paper presents new uniform Gaussian strong approximations for empirical processes indexed by classes of functions based on $d$-variate random vectors ($d\geq1$). First, a uniform Gaussian strong approximation is established for general empirical processes indexed by possibly Lipschitz functions, improving on previous results in the literature. In the setting considered by Rio (1994), and if the function class is Lipschitzian, our result improves the approximation rate $n^{-1/(2d)}$ to $n^{-1/\max\{d,2\}}$, up to a $\operatorname{polylog}(n)$ term, where $n$ denotes the sample size. Remarkably, we establish a valid uniform Gaussian strong approximation at the rate $n^{-1/2}\log n$ for $d=2$, which was previously known to be valid only for univariate ($d=1$) empirical processes via the celebrated Hungarian construction (Koml\'os et al., 1975). Second, a uniform Gaussian strong approximation is established for multiplicative separable empirical processes indexed by possibly Lipschitz functions, which addresses some outstanding problems in the literature (Chernozhukov et al., 2014, Section 3). Finally, two other uniform Gaussian strong approximation results are presented when the function class is a sequence of Haar basis based on quasi-uniform partitions. Applications to nonparametric density and regression estimation are discussed.

Date: 2024-06, Revised 2024-11
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2406.04191 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2406.04191

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2024-12-07
Handle: RePEc:arx:papers:2406.04191