Parametric measures of variability induced by risk measures
Fabio Bellini,
Tolulope Fadina,
Ruodu Wang and
Yunran Wei
Papers from arXiv.org
Abstract:
We present a general framework for a comparative theory of variability measures, with a particular focus on the recently introduced one-parameter families of inter-Expected Shortfall differences and inter-expectile differences, that are explored in detail and compared with the widely known and applied inter-quantile differences. From the mathematical point of view, our main result is a characterization of symmetric and comonotonic variability measures as mixtures of inter-Expected Shortfall differences, under a few additional technical conditions. Further, we study the stochastic orders induced by the pointwise comparison of inter-Expected Shortfall and inter-expectile differences, and discuss their relationship with the dilation order. From the statistical point of view, we establish asymptotic consistency and normality of the natural estimators and provide a rule of the thumb for cross-comparisons. Finally, we study the empirical behaviour of the considered classes of variability measures on the S&P 500 Index under various economic regimes, and explore the comparability of different time series according to the introduced stochastic orders.
Date: 2020-12, Revised 2022-04
New Economics Papers: this item is included in nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1) Track citations by RSS feed
Downloads: (external link)
http://arxiv.org/pdf/2012.05219 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2012.05219
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().