Stochastic derivative estimation for max-stable random fields
Erwan Koch and
Christian Y. Robert
Papers from arXiv.org
Abstract:
We consider expected performances based on max-stable random fields and we are interested in their derivatives with respect to the spatial dependence parameters of those fields. Max-stable fields, such as the Brown--Resnick and Smith fields, are very popular in spatial extremes. We focus on the two most popular unbiased stochastic derivative estimation approaches: the likelihood ratio method (LRM) and the infinitesimal perturbation analysis (IPA). LRM requires the multivariate density of the max-stable field to be explicit, and IPA necessitates the computation of the derivative with respect to the parameters for each simulated value. We propose convenient and tractable conditions ensuring the validity of LRM and IPA in the cases of the Brown--Resnick and Smith field, respectively. Obtaining such conditions is intricate owing to the very structure of max-stable fields. Then we focus on risk and dependence measures, which constitute one of the several frameworks where our theoretical results can be useful. We perform a simulation study which shows that both LRM and IPA perform well in various configurations, and provide a real case study that is valuable for the insurance industry.
Date: 2018-12, Revised 2020-11
New Economics Papers: this item is included in nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed
Downloads: (external link)
http://arxiv.org/pdf/1812.05893 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1812.05893
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().