Estimation and Inference of Treatment Effects with $L_2$-Boosting in High-Dimensional Settings
Jannis Kueck,
Ye Luo,
Martin Spindler and
Zigan Wang
Papers from arXiv.org
Abstract:
Empirical researchers are increasingly faced with rich data sets containing many controls or instrumental variables, making it essential to choose an appropriate approach to variable selection. In this paper, we provide results for valid inference after post- or orthogonal $L_2$-Boosting is used for variable selection. We consider treatment effects after selecting among many control variables and instrumental variable models with potentially many instruments. To achieve this, we establish new results for the rate of convergence of iterated post-$L_2$-Boosting and orthogonal $L_2$-Boosting in a high-dimensional setting similar to Lasso, i.e., under approximate sparsity without assuming the beta-min condition. These results are extended to the 2SLS framework and valid inference is provided for treatment effect analysis. We give extensive simulation results for the proposed methods and compare them with Lasso. In an empirical application, we construct efficient IVs with our proposed methods to estimate the effect of pre-merger overlap of bank branch networks in the US on the post-merger stock returns of the acquirer bank.
Date: 2017-12, Revised 2021-07
New Economics Papers: this item is included in nep-big and nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed
Downloads: (external link)
http://arxiv.org/pdf/1801.00364 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1801.00364
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().