General Bayesian time-varying parameter VARs for modeling government bond yields
Manfred Fischer,
Niko Hauzenberger,
Florian Huber and
Michael Pfarrhofer
No 2021/01, Working Papers in Regional Science from WU Vienna University of Economics and Business
Abstract:
US yield curve dynamics are subject to time-variation, but there is ambiguity on its precise form. This paper develops a vector autoregressive model with time-varying parameters and stochastic volatility which treats the nature of parameter dynamics as unknown. Coefficients can evolve according to a random walk, a Markov switching process, observed predictors or depend on a mixture of these. To decide which is supported by the data, we adopt Bayesian shrinkage priors to carry out model selection. Our framework is applied to model the US yield curve. We show that the model forecasts well, and focus on selected in-sample features to analyze determinants of structural breaks in US yield curve dynamics.
Keywords: Bayesian shrinkage; interest rate forecasting; latent effect modifers; MCMC sampling (search for similar items in EconPapers)
Date: 2022-05-30
New Economics Papers: this item is included in nep-ecm, nep-ets and nep-for
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://epub.wu.ac.at/8006/ original version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wiw:wus046:8006
Access Statistics for this paper
More papers in Working Papers in Regional Science from WU Vienna University of Economics and Business Welthandelsplatz 1, 1020 Vienna, Austria.
Bibliographic data for series maintained by WU Library ().