[go: up one dir, main page]

  EconPapers    
Economics at your fingertips  
 

Empirically Derived Suitability Maps to Downscale Aggregated Land Use Data

Nicolas Dendoncker (), Mark Rounsevell () and Patrick Bogaert ()

ERSA conference papers from European Regional Science Association

Abstract: Understanding mechanisms that drive present land use patterns is essential in order to derive appropriate models of land use change. When static analyses of land use drivers are performed, they rarely explicitly deal with spatial autocorrelation. Most studies are undertaken on autocorrelation-free data samples. By doing this, a great deal of information that is present in the dataset is lost. This paper presents a spatially explicit, cross-sectional, logistic analysis of land use drivers in Belgium. It is shown that purely regressive logistic models can only identify trends or global relationships between socio-economic or physico-climatic drivers and the precise location of each land use type. However, when the goal of a study is to obtain the best model of land use distribution, a purely autoregressive (or neighbourhood-based) model is appropriate. Moreover, it is also concluded that a neighbourhood based only on the 8 surrounding cells leads to the best logistic regression models at this scale of observation. This statement is valid for each land use type studied – i.e. built-up, forests, cropland and grassland.

Date: 2005-08
New Economics Papers: this item is included in nep-geo
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www-sre.wu.ac.at/ersa/ersaconfs/ersa05/papers/59.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wiw:wiwrsa:ersa05p59

Access Statistics for this paper

More papers in ERSA conference papers from European Regional Science Association Welthandelsplatz 1, 1020 Vienna, Austria.
Bibliographic data for series maintained by Gunther Maier ().

 
Page updated 2024-12-20
Handle: RePEc:wiw:wiwrsa:ersa05p59