[go: up one dir, main page]

 

  Previous |  Up |  Next

Article

Keywords:
non-commutative group; partially ordered groups
Summary:
We study states on unital po-groups which are not necessarily commutative as normalized positive real-valued group homomorphisms. We show that in contrast to the commutative case, there are examples of unital po-groups having no state. We introduce the state interpolation property holding in any Abelian unital po-group, and we show that it holds in any normal-valued unital $\ell $-group. We present a connection among states and ideals of po-groups, and we describe extremal states on the state space of unital po-groups.
References:
[1] Bigard A., Keimel K., Wolfenstein S.: Groupes et Anneax Réticulés. Springer–Verlag, Berlin – Heidelberg – New York 1981
[2] Birkhoff G.: Lattice theory. Amer. Math. Soc. Colloq. Publ. 25 (1967) MR 0227053 | Zbl 0153.02501
[3] Chovanec F.: States and observables on MV-algebras. Tatra Mountains Math. Publ. 3 (1993), 55–65 MR 1278519 | Zbl 0799.03074
[4] Nola A. Di, Georgescu G., Iorgulescu A.: Pseudo-BL-algebras, I, II. Multi. Val. Logic, to appear
[5] Dvurečenskij A.: Pseudo MV-algebras are intervals in $\ell $-groups. J. Austral. Math. Soc. 72 (2002), to appear DOI 10.1017/S1446788700036806 | MR 1902211 | Zbl 1027.06014
[6] Dvurečenskij A.: States on pseudo MV-algebras. Studia Logica 68 (2001), 301–327 DOI 10.1023/A:1012490620450 | MR 1865858 | Zbl 1081.06010
[7] Dvurečenskij A.: States and idempotents of pseudo MV-algebras. Tatra Mountains. Math. Publ. 22 (2001), 79–89 MR 1889036 | Zbl 0997.03050
[8] Dvurečenskij A., Kalmbach G.: States on pseudo MV-algebras and the hull-kernel topology. Atti Sem. Mat. Fis. Univ. Modena 50 (2002), 131–146 MR 1910782 | Zbl 1096.06009
[9] Dvurečenskij A., Vetterlein T.: Pseudoeffect algebras. I. Basic properties. Internat. J. Theoret. Phys. 40 (2001), 685–701 DOI 10.1023/A:1004192715509 | MR 1831592 | Zbl 1092.03034
[10] Dvurečenskij A., Vetterlein T.: Pseudoeffect algebras. II. Group representations. Interat. J. Theoret. Phys. 40 (2001), 703–726 DOI 10.1023/A:1004144832348 | MR 1831593 | Zbl 1092.03034
[11] Dvurečenskij A., Vetterlein T.: Congruences and states on pseudo-effect algebras. Found. Phys. Lett. 14 (2001), 425–446 DOI 10.1023/A:1015561420306 | MR 1857794
[12] Fuchs L.: Partially Ordered Algebraic Systems. Pergamon Press, Oxford – London – New York – Paris 1963 MR 0171864 | Zbl 0137.02001
[13] Georgescu G.: Bosbach states on pseudo-BL algebras. Soft Computing, to appear
[14] Georgescu G., Iorgulescu A.: Pseudo-MV algebras. Multi Valued Logic 6 (2001), 95–135 MR 1817439 | Zbl 1014.06008
[15] Goodearl K. R.: Partially Ordered Abelian Groups with Interpolation. (Math. Surveys Monographs 20), Amer. Math. Soc., Providence, Rhode Island 1986 MR 0845783 | Zbl 0589.06008
[16] Mundici D.: Averaging the truth-value in Łukasiewicz logic. Studia Logica 55 (1995), 113–127 DOI 10.1007/BF01053035 | MR 1348840 | Zbl 0836.03016
[17] Rachůnek J.: A non-commutative generalization of MV-algebras. Czechoslovak Math. J. 52 (2002), 255–273 DOI 10.1023/A:1021766309509 | Zbl 1012.06012
Partner of
EuDML logo