[go: up one dir, main page]

 

  Previous |  Up |  Next

Article

Summary:
Let $X$ be a quasicomplete locally convex Hausdorff space. Let $T$ be a locally compact Hausdorff space and let $C_0(T) = \lbrace f\: T \rightarrow I$, $f$ is continuous and vanishes at infinity$\rbrace $ be endowed with the supremum norm. Starting with the Borel extension theorem for $X$-valued $\sigma $-additive Baire measures on $T$, an alternative proof is given to obtain all the characterizations given in [13] for a continuous linear map $u\: C_0(T) \rightarrow X$ to be weakly compact.
References:
[1] J.  Diestel and J. J.  Uhl: Vector Measures. Survey No.15, Amer. Math. Soc., Providence, RI., 1977. MR 0453964
[2] N.  Dinculeanu: Vector Measures. Pergamon Press, New York, 1967. MR 0206190
[3] N.  Dinculeanu and I.  Kluvánek: On vector measures. Proc. London Math. Soc. 17 (1967), 505–512. MR 0214722
[4] I.  Dobrakov and T. V.  Panchapagesan: A simple proof of the Borel extension theorem and weak compactness of operators. (to appear). MR 1940050
[5] R. E. Edwards: Functional Analysis, Theory and Applications. Holt, Rinehart and Winston, New York, 1965. MR 0221256 | Zbl 0182.16101
[6] A.  Grothendieck: Sur les applications lineares faiblement compactes d’espaces du type C(K). Canad. J.  Math. 5 (1953), 129–173. DOI 10.4153/CJM-1953-017-4 | MR 0058866
[7] P. R.  Halmos: Measure Theory. Van Nostrand, New York, 1950. MR 0033869 | Zbl 0040.16802
[8] I.  Kluvánek: Characterizations of Fourier-Stieltjes transform of vector and operator valued measures. Czechoslovak Math.  J. 17 (1967), 261–277. MR 0230872
[9] T. V.  Panchapagesan: On complex Radon measures I. Czechoslovak Math.  J. 42 (1992), 599–612. MR 1182191 | Zbl 0795.28009
[10] T. V.  Panchapagesan: On complex Radon measures II. Czechoslovak Math.  J. 43 (1993), 65–82. MR 1205231 | Zbl 0804.28007
[11] T. V.  Panchapagesan: Applications of a theorem of Grothendieck to vector measures. J.  Math. Anal. Appl. 214 (1997), 89–101. DOI 10.1006/jmaa.1997.5589 | MR 1645515
[12] T. V.  Panchapagesan: Baire and $\sigma $-Borel characterizations of weakly compact sets in $M(T)$. Trans. Amer. Math. Soc. (1998), 4539–4547. MR 1615946 | Zbl 0946.28008
[13] T. V.  Panchapagesan: Characterizations of weakly compact operators on $C_0(T)$. Trans. Amer. Math. Soc. (1998), 4549–4567. Zbl 0906.47021
[14] T. V.  Panchapagesan: On the limitations of the Grothendieck techniques. (to appear). MR 1865743
[15] M.  Sion: Outer measures with values in a topological group. Proc. London Math. Soc. 19 (1969), 89–106. DOI 10.1112/plms/s3-19.1.89 | MR 0239039 | Zbl 0167.14503
[16] E.  Thomas: L’integration par rapport a une mesure de Radon vectoriele. Ann. Inst. Fourier (Grenoble) 20 (1970), 55–191. DOI 10.5802/aif.352 | MR 0463396
Partner of
EuDML logo