[go: up one dir, main page]

 

  Previous |  Up |  Next

Article

Title: On radially extremal graphs and digraphs, a survey (English)
Author: Gliviak, Ferdinand
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 125
Issue: 2
Year: 2000
Pages: 215-225
Summary lang: English
.
Category: math
.
Summary: The paper gives an overview of results for radially minimal, critical, maximal and stable graphs and digraphs. (English)
Keyword: extremal graphs
Keyword: extremal digraphs
Keyword: radius
Keyword: radius of graphs
Keyword: radius of digraphs
MSC: 05C12
MSC: 05C20
MSC: 05C35
idZBL: Zbl 0963.05072
idMR: MR1768809
DOI: 10.21136/MB.2000.125959
.
Date available: 2009-09-24T21:42:35Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/125959
.
Reference: [1] F. Buckley: Self-centered graphs with a given radius.Proc. 10th S-E Conf. Combinatorics, Graph Theory and Computing. Boca Raton, 1979, pp. 211-215. Zbl 0426.05034, MR 0561047
Reference: [2] F. Buckley F. Harary: Distance in Graphs.Addison-Wesley, New York, 1990, 335 pp. MR 1045632
Reference: [3] L. Caccetta: On graphs that are critical with respect to the parameters: diameter, connectivity and edge-connectivity.Matematiche (Catania) 47 (1992), 213-229. Zbl 0793.05079, MR 1275856
Reference: [4] G. Chartrand, Songlin Tian: Distance in digraphs.Mathematics and Computer Models, Preprint, 1991, 15 pp. MR 1486881
Reference: [5] Yu Xiang Du, Lijie Shi, Xiaodong Zhao: The structure of upper radius critical graphs.J. Natur. Sci. Math. 36 (1996), 77-82. MR 1627192
Reference: [6] R. D. Dutton S. R. Medidi. R. C. Brigham: Changing and unchanging the radius of a graph.Linear Algebra Appl. 217 (1995), 67-82. MR 1322543
Reference: [7] P. Erdős J. Pach R. Pollack Z. Tuza: Radius, diameter, and minimum degree.J. Combin. Theory, Ser. B 47 (1989), 73-79. MR 1007715, 10.1016/0095-8956(89)90066-X
Reference: [8] L. Fajtlowicz: A characterisation of radius critical graphs.J. Graph Theory 12 (1988), 529-533. MR 0968749, 10.1002/jgt.3190120409
Reference: [9] G. Sh. Fridman: On radially critical oriented graphs.Dokl. Akad. Nauk 212 (1973), 556-559. (In Russian.) MR 0412008
Reference: [10] F. Gliviak: On radially critical graphs.Recent Advances in Graph Theory- Proc. Symp. Prague 1974. Academia, Praha, 1975, pp. 207-221. MR 0384613
Reference: [11] F. Gliviak: On the structure of radially critical graphs.Graphs, Hypergraphs and Block Systems. Proc. Symp. Zielona Gora, Poland, 1976, pp. 69-73. Zbl 0345.05121, MR 0384613
Reference: [12] F. Gliviak M. Knor L. Šoltés: On radially maximal graphs.Australasian J. Combin. 9 (1994), 275-284. MR 1271207
Reference: [13] F. Gliviak M. Knor L. Šoltés: Two-radially maximal graphs with special centers.Math. Slovaca 45 (1995), 227-233. MR 1361815
Reference: [14] F. Gliviak M. Knor: On radially extremal digraphs.Math. Bohem. 120 (1995), 41-55. MR 1336945
Reference: [15] N. Graham F. Harary: Changing and unchanging the diameter of a hypercube.Discrete Appl. Math. 37/38 (1992), 265-274. MR 1176857
Reference: [16] F. Harary: Changing and unchanging invariants for graphs.Bull. Malaysian Math. Soc. (2) 5 (1982), 73-78. Zbl 0512.05035, MR 0700121
Reference: [17] F. Harary G. Thomassen: Anticritical graphs.Math. Proc. Cambridge Philos. Soc. 79 (1976), 11-18. MR 0414439, 10.1017/S0305004100052051
Reference: [18] T. W. Haynes L. M. Lawson R. C. Brigham R. D. Dutton: Changing and unchanging of the graphical invariants: Minimum and maximum degree, maximum clique size, node independence number and edge independence number.Congr. Numer. 72 (1990), 239-252. MR 1041828
Reference: [19] J. Harant: An upper bound for the radius of a 3-connected graph.Discrete Math. 122 (1993), 335-341. Zbl 0787.05055, MR 1246688, 10.1016/0012-365X(93)90306-E
Reference: [20] J. Harant H. Walther: On the radius of graphs.J. Combin. Theory, Ser. B 30 (1981), 113-117. MR 0609604, 10.1016/0095-8956(81)90101-5
Reference: [21] Katsumi Inoue: Radius of 3-connected graphs.SUT J. Math. 32 (1996), 83-90. MR 1401106
Reference: [22] Sh. M. Ismailov: The number of arcs of a digraph of a given radius with a given number of vertices and strong components.Dokl. Akad. Nauk Azerbaidzhana 27 (1971), 8-12. (In Russian.) MR 0294177
Reference: [23] Ju. Nishanov: On radially critical graphs with maximal diameter.Voprosy algebry, teorii chisel, diferencialnych i integralnych uravneniy. Samarkand State University, Samarkand, 1973, pp. 138-147. (In Russian.)
Reference: [24] Ju. Nishanov: On two classes of radially critical graphs.Voprosy algebry i teorii chisel. Samarkand State University, Samarkand, 1980, pp. 16-22. (In Russian.)
Reference: [25] Ju. Nishanov: On radially critical graphs with radius two.Modeli i algoritmy prikiadnoj matematiki. Samarkand, 1989. pp. 125-130. (In Russian.)
Reference: [26] Ju. Nishanov: On unicyclic radially critical graphs.Voprosy algebry i teorii chisel. Samarkand State University. Samarkand, 1990. pp. 54-65. (In Russian.)
Reference: [27] J. Plesnik: Graph Algorithms.Veda, Bratislava. 1983, 343 pp. (in Slovak.)
Reference: [28] Tomomi Segawa: Radius increase caused by edge deletion.SUT J. Math. 30 (1994), 159-162. MR 1311012
Reference: [29] Songlin Tian: Sum distance in digraphs.Congr. Numer. 78 (1990), 179 -192. MR 1140482
Reference: [30] Songlin Tian, Ch. E. Williams: Detour distance in digraphs.Graph Theory and Applications. Proc. Int. Conference, vol. 2, Y. Alavi. A. Schweuk (eds.). John Wiiey and Sons, 1995, pp. 1155-1165. MR 1405891
Reference: [31] V. G. Vizing: On the number of edges in a graph with given radius.Dokl. Akad. Nauk 173 (1967). 1245-1246. (In Russian.) MR 0210622
Reference: [32] A. A. Zykov: Fundamentals of Graph Theory.Nauka. Moskva, 1987, 381 pp. (In Russian.) MR 0909295
.

Files

Files Size Format View
MathBohem_125-2000-2_10.pdf 1.902Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo