[go: up one dir, main page]

 

  Previous |  Up |  Next

Article

Title: Intersections of minimal prime ideals in the rings of continuous functions (English)
Author: Ghosh, Swapan Kumar
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 47
Issue: 4
Year: 2006
Pages: 623-632
.
Category: math
.
Summary: A space $X$ is called $\mu $-compact by M. Mandelker if the intersection of all free maximal ideals of $C(X)$ coincides with the ring $C_K(X)$ of all functions in $C(X)$ with compact support. In this paper we introduce $\phi $-compact and $\phi '$-compact spaces and we show that a space is $\mu $-compact if and only if it is both $\phi $-compact and $\phi '$-compact. We also establish that every space $X$ admits a $\phi $-compactification and a $\phi '$-compactification. Examples and counterexamples are given. (English)
Keyword: minimal prime ideal
Keyword: $P$-space
Keyword: $F$-space
Keyword: $\mu$-compact space
Keyword: $\phi $-compact space
Keyword: $\phi '$-compact space
Keyword: round subset
Keyword: almost round subset
Keyword: nearly round subset
MSC: 46E25
MSC: 46J20
MSC: 54C40
idZBL: Zbl 1150.54018
idMR: MR2337417
.
Date available: 2009-05-05T17:00:08Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119623
.
Reference: [1] Gillman L., Jerison M.: Rings of Continuous Functions.University Series in Higher Math., Van Nostrand, Princeton, New Jersey, 1960. Zbl 0327.46040, MR 0116199
Reference: [2] Henriksen M., Jerison M.: The space of minimal prime ideals of a commutative ring.Trans. Amer. Math. Soc. 115 (1965), 110-130. Zbl 0147.29105, MR 0194880
Reference: [3] Johnson D.G., Mandelker M.: Functions with pseudocompact support.General Topology Appl. 3 (1973), 331-338. Zbl 0277.54009, MR 0331310
Reference: [4] Mandelker M.: Round $z$-filters and round subsets of $\beta X$.Israel J. Math. 7 (1969), 1-8. Zbl 0174.25604, MR 0244951
Reference: [5] Mandelker M.: Supports of continuous functions.Trans. Amer. Math. Soc. 156 (1971), 73-83. Zbl 0197.48703, MR 0275367
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_47-2006-4_8.pdf 219.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo