[go: up one dir, main page]

 

  Previous |  Up |  Next

Article

Keywords:
fixed circle; Archimedean $t$-norm; $M_h$-triangular fuzzy metric
Summary:
Fixed circle problems belong to a realm of problems in metric fixed point theory. Specifically, it is a problem of finding self mappings which remain invariant at each point of the circle in the space. Recently this problem is well studied in various metric spaces. Our present work is in the domain of the extension of this line of research in the context of fuzzy metric spaces. For our purpose, we first define the notions of a fixed circle and of a fixed Cassini curve then determine suitable conditions which ensure the existence and uniqueness of a fixed circle (resp. a Cassini curve) for the self operators. Moreover, we present a result which prescribed that the fixed point set of fuzzy quasi-nonexpansive mapping is always closed. Our results are supported by examples.
References:
[1] Abbasi, N., Golshan, H. M.: Caristi's fixed point theorem and its equivalences in fuzzy metric spaces. Kybernetika 52 (2016), 6, 929-942. DOI  | MR 3607855
[2] Abbas, M., Ali, B., Romaguera, S.: Multivalued Caristi's type mappings in fuzzy metric spaces and a characterization of fuzzy metric completeness. Filomat 29 (2015), 6, 1217-1222. DOI  | MR 3359310
[3] Aydi, H., Taş, N., Özgür, N. Y., Mlaiki, N.: Fixed-discs in rectangular metric spaces. Symmetry 11 (2019), 2, 294. DOI  | MR 4269014
[4] Aydi, H., Taş, N., Özgür, N. Y., Mlaiki, N.: Fixed discs in Quasi-metric spaces. Fixed Point Theory 22 (2021), 1, 59-74. DOI  | MR 4269014
[5] Calin, O.: Activation Functions. In: Deep Learning Architectures. Springer Series in the Data Sciences. Springer, Cham. 2020, pp. 21-39. MR 4240268
[6] Caristi, J.: Fixed point theorem for mappings satisfying inwardness conditions. Trans. Amer. Math. Soc. 215 (1976), 241-251. DOI 10.1090/S0002-9947-1976-0394329-4 | MR 0394329
[7] Chaoha, P., Phon-On, A.: A note on fixed point sets in CAT(0) spaces. J. Math. Anal. Appl. 320 (2006), 2, 983-987. DOI  | MR 2226009
[8] George, A., Veeramani, P.: On some results in fuzzy metric spaces. Fuzzy Sets Systems 64 (1994), 3, 395-399. DOI  | MR 1289545 | Zbl 0843.54014
[9] Grabiec, M.: Fixed points in fuzzy metric spaces. Fuzzy Sets Systems 27 (1988), 3, 385-389. DOI  | MR 0956385 | Zbl 0664.54032
[10] Gregori, V., Sapena, A.: On fixed-point theorems in fuzzy metric spaces. Fuzzy Sets Systems 125 (2002), 2, 245-252. DOI  | MR 1880341
[11] Gregori, V., Morillas, S., Sapena, A.: Examples of fuzzy metrics and applications. Fuzzy Sets Systems 170 (2011), 1, 95-111. DOI  | MR 2775611 | Zbl 1210.94016
[12] Gregori, V., Miñana, J-J., Morillas, S.: Some questions in fuzzy metric spaces. Fuzzy Sets System 204 (2012), 71-85. DOI  | MR 2950797 | Zbl 1259.54001
[13] Gregori, V., Miñana, J-J.: On fuzzy $\psi$- contractive mappings. Fuzzy Sets Systems 300 (2016), 93-101. DOI  | MR 3226661
[14] Gopal, D., Abbas, M., Imdad, M.: $\psi$-weak contractions in fuzzy metric spaces. Iranian J Fuzzy Syst. 5 (2011), 5, 141-148. MR 2907800
[15] Gopal, D., Vetro, C.: Some new fixed point theorems in fuzzy metric spaces. Iranian J. Fuzzy Syst. 11 (2014), 3, 95-107. MR 3237493
[16] Gopal, D., Martínez-Moreno, J.: Suzuki type fuzzy $\mathcal{Z}$-contractive mappings and fixed points in fuzzy metric spaces. Kybernetika 7 (2021), 5, 908-921. DOI  | MR 4376867
[17] Kramosil, I., Michalek, J.: Fuzzy metric and statistical metric spaces. Kybernetika 11 (1975), 5, 336-344. MR 0410633
[18] Miheţ, D.: Fuzzy $\psi$-contractive mappings in non-Archimedean fuzzy metric spaces. Fuzzy Sets Systems 159 (2008), 6, 739-744. DOI  | MR 2410532
[19] Mohamad, S.: Global exponential stability in DCNNs with distributed delays and unbounded activations. J. Comput. Appl. Math. 205 (2007), 1, 161-173. DOI  | MR 2324832
[20] Özgür, N. Y., Taş, N., Çelik, U.: New fixed-circle results on $S$-metric spaces. Bull. Math. Anal. Appl. 9 (2017), 2, 10-23. MR 3672224
[21] Özgür, N. Y., Taş, N.: Some fixed-circle theorems and discontinuity at fixed circle. In: AIP Conference Proc., AIP Publishing LLC 2018 (Vol. 1926, No. 1, p. 020048.) DOI 
[22] Özgür, N. Y., Taş, N.: Some fixed-circle theorems on metric spaces. Bull. Malays. Math. Sci. Soc. 42 (2019), 4, 1433-1449. DOI  | MR 3963837
[23] Özgür, N., Taş, N.: Geometric properties of fixed points and simulation functions. arXiv:2102.05417 DOI:10.48550/arXiv.2102.05417 DOI 10.48550/arXiv.2102.05417
[24] Özgür, N.: Fixed-disc results via simulation functions. Turkish J. Math. 43 (2019), 6, 2794-2805. DOI  | MR 4038378
[25] Özdemir, N., B.İskender, B., Özgür, N. Y.: Complex valued neural network with Möbius activation function. Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 12, 4698-4703. DOI  | MR 2820859
[26] Pomdee, K., Sunyeekhan, G., Hirunmasuwan, P.: The product of virtually nonexpansive maps and their fixed points. In: Journal of Physics, Conference Series, IOP Publishing, 2018 (Vol. 1132, No. 1, p.\.012025). DOI 
[27] Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. Elsevier, New York 1983. MR 0790314 | Zbl 0546.60010
[28] Sharma, S., Sharma, S., Athaiya, A.: Activation functions in neural networks. Towards Data Sci. 6 (2017), 12, 310-316.
[29] Shukla, S., Gopal, D., Sintunavarat, W.: A new class of fuzzy contractive mappings and fixed point theorems. Fuzzy Sets and Systems 350 (2018), 85-94. DOI  | MR 3852589
[30] Tomar, A., Joshi, M., Padaliya, S. K.: Fixed point to fixed circle and activation function in partial metric space. J. Appl. Anal. 28 (2022), 1, 57-66. DOI  | MR 4431325
[31] Wang, Z., Guo, Z., Huang, L., Liu, X.: Dynamical behaviour of complex-valued Hopfield neural networks with discontinuous activation functions. Neural Process Lett. 45 (2017), 3, 1039-1061. DOI 
[32] Zhang, Y., Wang, Q. G.: Stationary oscillation for high-order Hopfield neural networks with time delays and impulses. J. Comput. Appl. Math. 231 (2009), 1, 473-477. DOI  | MR 2532684
Partner of
EuDML logo