[go: up one dir, main page]

 

  Previous |  Up |  Next

Article

Keywords:
Set; application; graded algebra; involutive algebra; quadratic algebra; weak $H^*$-algebra; structure theory
Summary:
Let $({\mathfrak A} , {\epsilon }_{u})$ and $({\mathfrak B} , {\epsilon }_{b})$ be two pointed sets. Given a family of three maps ${\mathcal F}=\{f_1\colon {{\mathfrak A} } \to {\mathfrak A} ; f_2\colon {{\mathfrak A} } \times {\mathfrak A} \to {\mathfrak A} ; f_3\colon {{\mathfrak A} } \times {\mathfrak A} \to {\mathfrak B} \}$, this family provides an adequate decomposition of ${\mathfrak A} \setminus \{ \epsilon _u \}$ as the orthogonal disjoint union of well-described ${\mathcal F}$-invariant subsets. This decomposition is applied to the structure theory of graded involutive algebras, graded quadratic algebras and graded weak $H^*$-algebras.
References:
[1] Ambrose, W.: Structure theorems for a special class of Banach algebras. Transactions of the American Mathematical Society, 57, 3, 1945, 364-386, JSTOR, DOI 10.1090/S0002-9947-1945-0013235-8
[2] Bajo, I., Benayadi, S., Medina, A.: Symplectic structures on quadratic Lie algebras. Journal of Algebra, 316, 1, 2007, 174-188, Elsevier, DOI 10.1016/j.jalgebra.2007.06.001
[3] Benayadi, S.: Structures de certaines algèbres de Lie quadratiques. Communications in Algebra, 23, 10, 1995, 3867-3887, Taylor & Francis, DOI 10.1080/00927879508825437
[4] Calderón, A.J., Draper, C., Martin, C., Ndoye, D.: Orthogonal-gradings on $ H^* $-algebras. Mediterranean Journal of Mathematics, 15, 1, 2018, 1-18, Springer, DOI 10.1007/s00009-017-1059-7
[5] Mira, J.A. Cuenca, Mart{í}n, A.G., Gonz{á}lez, C.M.: Structure theory for $L^{*}$-algebras. Mathematical Proceedings of the Cambridge Philosophical Society, 107, 2, 1990, 361-365, Cambridge University Press, DOI 10.1017/S0305004100068626
[6] Draper, C., Martín, C.: Gradings on $\mathfrak {g}_2$. Linear Algebra and its Applications, 418, 1, 2006, 85-111,
[7] Draper, C., Martín, C.: Gradings on the Albert algebra and on $\mathfrak {f}_4$. Revista Matemática Iberoamericana, 25, 3, 2009, 841-908, Real Sociedad Matemática Española,
[8] Elduque, A., Kochetov, M.: Gradings on simple Lie algebras. 2013, Mathematical Surveys and Monographs 189, American Mathematical Society,
Partner of
EuDML logo