[go: up one dir, main page]

 

  Previous |  Up |  Next

Article

Keywords:
monotone Aalen model; Bayesian estimation; Gibbs sampler; small sample size
Summary:
This text describes a method of estimating the hazard rate of survival data following monotone Aalen regression model. The proposed approach is based on techniques which were introduced by Arjas and Gasbarra [4]. The unknown functional parameters are assumed to be a priori piecewise constant on intervals of varying count and size. The estimates are obtained with the aid of the Gibbs sampler and its variants. The performance of the method is explored by simulations. The results indicate that the method is applicable on small sample size datasets.
References:
[1] Aalen, O. O.: A model for nonparametric regression analysis of counting processes. Springer Lect. Notes in Statist. 2 (1980), 1-25. MR 0577267 | Zbl 0445.62095
[2] Aalen, O. O.: A linear regression model for the analysis of life times. Statist. Med. 8 (1989), 907-925. DOI 10.1002/sim.4780080803
[3] Andersen, P. K., Borgan, A., Gill, R. D., Kieding, N.: Statistical Models Based on Counting Processes. Springer, New York 1993. MR 1198884
[4] Arjas, E., Gasbarra, D.: Nonparametric bayesian inference from right censored survival data, using Gibbs sampler. Statist. Sinica 4 (1994), 505-524. MR 1309427
[5] Cox, D. R.: Regression models and life-tables. J. Roy. Statist. Soc. 34 (1972), 2, 187-220. MR 0341758 | Zbl 0243.62041
[6] Blasi, P. De, Hjort, N. L.: Bayesian survival analysis in proportional hazard models with logistic relative risk. Scand. J. Statist. 34 (2007), 229-257. DOI 10.1111/j.1467-9469.2006.00543.x | MR 2325252 | Zbl 1142.62077
[7] Blasi, P. De, Hjort, N. L.: The Bernstein-von Mises theorem in semiparametric competing risks models. J. Statist. Planning Inf. 34 (2009), 1678-1700. Zbl 1160.62023
[8] Doksum, K.: Tailfree and neutral random probabilities and their posterior distributions. Ann. Statist. 2 (2006), 183-201. MR 0373081 | Zbl 0279.60097
[9] Green, P. J.: Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82 (1995), 711-732. DOI 10.1093/biomet/82.4.711 | MR 1380810 | Zbl 0861.62023
[10] Hjort, N. L.: Nonparametric Bayes estimators based on beta processes in models for Life history data. Ann. Stat. 3 (1990), 1259 - 1294. DOI 10.1214/aos/1176347749 | MR 1062708 | Zbl 0711.62033
[11] Huffer, F. W., McKeague, I. W.: Weighted least squares estimation for Aalen's additive risk model. J. Amer. Statist. Assoc. 86 (1991), 114-129. DOI 10.1080/01621459.1991.10475010
[12] Kaplan, E. L., Meier, P.: Nonparametric estimation from incomplete observations. J. Amer. Statist. Assoc. 53 (1958), 457-481. DOI 10.1080/01621459.1958.10501452 | MR 0093867 | Zbl 0089.14801
[13] Kim, Y.: The Bernstein-von Mises theorem for the proportional hazard model. Ann. Statist. 34 (2006), 1678-1700. DOI 10.1214/009053606000000533 | MR 2283713 | Zbl 1246.62050
[14] Kim, Y., Lee, J.: A Bernstein-von Mises theorem in the nonparametric right-censoring model. Ann. Statist. 32 (2004), 1492-1512. DOI 10.1214/009053604000000526 | MR 2089131 | Zbl 1047.62043
[15] Sinha, D., Dipak, K. D.: Semiparametric Bayesian analysis of survival data. J. Amer. Statist. Assoc. 92 (1997), 1195-1212. DOI 10.1080/01621459.1997.10474077 | MR 1482151 | Zbl 1067.62520
[16] Timková, J.: Bayesian nonparametric estimation of hazard rate in survival analysis using Gibbs sampler. In: Proc. WDS 2008, Part I: Mathematics and Computer Sciences, pp. 80-87.
Partner of
EuDML logo