[go: up one dir, main page]

 

  Previous |  Up |  Next

Article

MSC: 62A10, 93E12
Keywords:
time-delay systems; optimal control; stability
Summary:
This note investigates the optimal control problem for a time-invariant linear systems with an arbitrary constant time-delay in in the input channel. A state feedback is provided for the infinite horizon case with a quadratic cost function. The solution is memoryless, except at an initial time interval of measure equal to the time-delay. If the initial input is set equal to zero, then the optimal feedback control law is memoryless from the beginning. Stability results are established for the closed loop system, in the scalar case.
References:
[1] Basin, M.: New Trends in optimal Filtering and Control for Polynomial and Time-Delay Systems. Lecture Notes in Control and Inform. Sci. 380, Springer-Verlag, Berlin - Heidelberg 2008. MR 2462136 | Zbl 1160.93001
[2] Basin, M., Martanez-Zniga, R.: Optimal linear filtering over observations with multiple delays. Internat. J. Robust Nonlinear Control 14 (2004), 8, 685-696. DOI 10.1002/rnc.917 | MR 2058560
[3] Basin, M., Rodriguez-Gonzalez, J., Fridman, L., Acosta, P.: Integral sliding mode design for robust filtering and control of linear stochastic time-delay systems. Internat. J. Robust Nonlinear Control 15 (2005), 9, 407-421. DOI 10.1002/rnc.995 | MR 2139465 | Zbl 1100.93012
[4] Basin, M., Rodriguez-Gonzalez, J., Martinez-Zuniga, R.: Optimal control for linear systems with time-delay in control input. J. Franklin Inst. - Engrg. and Appl. Math. 341 (2004), 3, 267-278. DOI 10.1016/j.jfranklin.2003.12.004 | MR 2054476 | Zbl 1073.93055
[5] Boukas, E.-K., Liu, Z.-K.: Deterministic and Stochastic Time Delay Systems. Birkhauser, Boston 2002. Zbl 1056.93001
[6] Carravetta, F., Palumbo, P., Pepe, P.: Quadratic optimal control of linear systems with time-varying input delay. In: Proc. 49th IEEE Conf. on Dec. and Control (CDC), Atlanta 2010, pp. 4996-5000.
[7] Carravetta, F., Palumbo, P., Pepe, P.: Memoryless solution to the infinite horizon optimal control of LTI systems with delayed input. In: Proc. IASTED Asian Conference on Modelling, Identification and Control (AsiaMIC), Phuket 2012.
[8] Chang, Y. P., Tsai, J. S. H., Shieh, L. S.: Optimal digital redesign of hybrid cascaded input-delay systems under state and control constraints. IEEE Trans. Circuits and Systems I - Fundamental Theory and Applications 49 (2002), 9, 1382-1392.
[9] Chopra, N., Berestesky, P., Spong, M. W.: Bilateral teleoperation over unreliable communication networks. IEEE Trans. Control Systems Technol. 16 (2008), 304-313. DOI 10.1109/TCST.2007.903397
[10] Chyung, D. H.: Discrete systems with delays in control. IEEE Trans. Automat. Control 14 (1969), 196-197. DOI 10.1109/TAC.1969.1099152 | MR 0243873
[11] Delfour, M. C.: The linear quadratic optimal control problem with delays in state and control variables: A state space approach. SIAM J. Control Optim. 24 (1986), 835-883. DOI 10.1137/0324053 | MR 0854061 | Zbl 0606.93037
[12] Fridman, E.: New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems. Systems Control Lett. 43 (2001), 4, 309-319. DOI 10.1016/S0167-6911(01)00114-1 | MR 2008812 | Zbl 0974.93028
[13] Fridman, E.: Stability of linear descriptor systems with delay: a Lyapunov-based approach. J. Math. Anal. Appl. 273 (2002), 24-44. DOI 10.1016/S0022-247X(02)00202-0 | MR 1933013 | Zbl 1032.34069
[14] Gu, K., Kharitonov, V. L., Chen, J.: Stability of Time Delay Systems. Birkhauser, Boston 2003. Zbl 1039.34067
[15] Ichikawa, A.: Quadratic control of evolution equations with delays in control. SIAM J. Control Optim. 5 (1982), 645-668. DOI 10.1137/0320048 | MR 0667646 | Zbl 0495.49006
[16] Germani, A., Manes, C., Pepe, P.: Implementation of an LQG control scheme for linear systems with delayed feedback action. In: Proc. 3rd European Control Conference (ECC), Vol. 4, Rome 1995, pp. 2886-2891.
[17] Germani, A., Manes, C., Pepe, P.: A twofold spline approximation for finite horizon LQG control of hereditary systems. SIAM J. Control Optim. 39 (2000), 4, 1233-1295. DOI 10.1137/S0363012998337461 | MR 1814274 | Zbl 1020.93030
[18] Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics. Series Math. Sci. Engrg. 191, Academic Press, Boston 1993. MR 1218880 | Zbl 0777.34002
[19] Kojima, A., Ishijima, S.: Formulas on preview and delayed $H_\infty$ control. In: Proc. 42nd IEEE Conf. on Dec. and Control (CDC), Mauii 2003, pp. 6532-6538.
[20] Krstic, M.: Delay Compensation for Nonlinear, Adaptive, and PDE Systems. Birkauser, Boston 2009. MR 2553294 | Zbl 1181.93003
[21] Ma, Y. C., Huang, L. F., Zhang, Q. L.: Robust guaranteed cost $H\sb \infty$ control for an uncertain time-varying delay system. (Chinese) Acta Phys. Sinica 56 (2007), 7, 3744-3752. MR 2356808
[22] Milman, M. H.: Approximating the linear quadratic optimal control law for hereditary systems with delays in the control. SIAM J. Control Optim. 2 (1988), 291-320. DOI 10.1137/0326017 | MR 0929803 | Zbl 0651.93025
[23] Moelja, A. A., Meinsma, G.: $H\sb 2$-optimal control of systems with multiple i/o delays: time domain approach. Automatica 41 (2005), 7, 1229-1238. DOI 10.1016/j.automatica.2005.01.016 | MR 2160122
[24] Mondié, S., Michiels, W.: Finite spectrum assignment of unstable time-delay systems with a safe implementation. IEEE Trans. Automat. Control 48, 12, 2207-2212. DOI 10.1109/TAC.2003.820147 | MR 2027246
[25] Niculescu, S.-I.: Delay Effects on Stability, A Robust Control Approach. LNCIS 269, Springer-Verlag, London Limeted 2001. MR 1880658 | Zbl 0997.93001
[26] Kuang, Y.: Delay Differential Equations With Applications in Population Dynamics. Math. Sci. Engrg. 191, Academic Press Inc., San Diego 1993. MR 1218880 | Zbl 0777.34002
[27] Pandolfi, P.: The standard regulator problem for systems with input delays. An approach through singular control theory. Appl. Math. Optim. 31 (1995), 119-136. DOI 10.1007/BF01182784 | MR 1309302 | Zbl 0815.49006
[28] Pepe, P., Jiang, Z.-P.: A Lyapunov-Krasovskii methodology for ISS and iISS of time-delay systems. Syst. Control Lett. 55 (2006), 1006-1014. DOI 10.1016/j.sysconle.2006.06.013 | MR 2267393 | Zbl 1120.93361
[29] Pindyck, R. S.: The discrete-time tracking problem with a time delay in the control. IEEE Trans. Automat. Control 17 (1972), 397-398. DOI 10.1109/TAC.1972.1099975 | MR 0439335
[30] Polushin, I., Marquez, H. J., Tayebi, A., Liu, P. X.: A multichannel IOS small gain theorm for systems with multiple time-varying communication delays. IEEE Trans. Automat. Control 54 (2009), 404-409. DOI 10.1109/TAC.2008.2009582 | MR 2491974
[31] Tadmor, G.: The standard $H_{\infty}$ problem in systems with a single input delay. IEEE Trans. Automat. Control 45 (2000), 382-397. DOI 10.1109/9.847719 | MR 1762852 | Zbl 0978.93026
[32] Wang, P. K. C.: Optimal control for discrete-time systems with time-lag controls. IEEE Trans. Automat. Control 19 (1975), 425-426. DOI 10.1109/TAC.1975.1100968
[33] Zhang, H., Duan, G., Xie, L.: Linear quadratic regulation for linear time-varying systems with multiple input delays. Automatica 42 (2006), 9, 1465-1476. DOI 10.1016/j.automatica.2006.04.007 | MR 2246836 | Zbl 1128.49304
[34] Zhou, B., Lin, Z., Duan, G.-R.: Truncated predictor feedback for linear systems with long time-varying input delays. Automatica 48 (2012), 10, 2387-2389. DOI 10.1016/j.automatica.2012.06.032 | MR 2961137
Partner of
EuDML logo