[go: up one dir, main page]

 

  Previous |  Up |  Next

Article

Keywords:
almost periodic functions; almost periodic sequences; almost periodicity in metric spaces
Summary:
We present a method for constructing almost periodic sequences and functions with values in a metric space. Applying this method, we find almost periodic sequences and functions with prescribed values. Especially, for any totally bounded countable set $X$ in a metric space, it is proved the existence of an almost periodic sequence $\lbrace \psi _k\rbrace _{k \in \mathbb{Z}}$ such that $\lbrace \psi _k; \, k \in \mathbb{Z}\rbrace = X$ and $\psi _k = \psi _{k + l q(k)}$, $l \in \mathbb{Z}$ for all $k$ and some $q(k) \in \mathbb{N}$ which depends on $k$.
References:
[1] Bede, B., Gal, S. G.: Almost periodic fuzzy-number-valued functions. Fuzzy Sets and Systems 147 (3) (2004), 385–403. DOI 10.1016/j.fss.2003.08.004 | MR 2100833 | Zbl 1053.42015
[2] Corduneanu, C.: Almost Periodic Functions. John Wiley and Sons, New York, 1968. MR 0481915 | Zbl 0175.09101
[3] Flor, P.: Über die Wertmengen fastperiodischer Folgen. Monatsh. Math. 67 (1963), 12–17. DOI 10.1007/BF01300676 | MR 0168467 | Zbl 0116.06501
[4] Jajte, R.: On almost-periodic sequences. Colloq. Math. 13 (1964/1965), 265–267. MR 0179761
[5] Janeczko, S., Zajac, M.: Critical points of almost periodic functions. Bull. Polish Acad. Sci. Math. 51 (2003), 107–120. MR 1990965 | Zbl 1032.57031
[6] Muchnik, A., Semenov, A., Ushakov, M.: Almost periodic sequences. Theoret. Comput. Sci. 304 (2003), 1–33. DOI 10.1016/S0304-3975(02)00847-2 | MR 1992325 | Zbl 1044.68100
[7] Tornehave, H.: On almost periodic movements. Danske Vid. Selsk. Mat.–Fys. Medd. 28 (13) (1954), 1–42. MR 0067481 | Zbl 0059.07401
[8] Veselý, M.: Construction of almost periodic functions with given properties. In preparation.
[9] Veselý, M.: Construction of almost periodic sequences with given properties. Electron. J. Differential Equations 126 (2008), 1–22. MR 2443149 | Zbl 1165.39014
Partner of
EuDML logo