[go: up one dir, main page]

 

  Previous |  Up |  Next

Article

Keywords:
semiprime ideal; prime ideal; meet-irreducible element; $I$-atom
Summary:
The concept of a semiprime ideal in a poset is introduced. Characterizations of semiprime ideals in a poset $P$ as well as characterizations of a semiprime ideal to be prime in $P$ are obtained in terms of meet-irreducible elements of the lattice of ideals of $P$ and in terms of maximality of ideals. Also, prime ideals in a poset are characterized.
References:
[1] Beran, L.: On semiprime ideals in lattices. J. Pure Appl. Algebra 64 (1990), 223-227. DOI 10.1016/0022-4049(90)90058-P | MR 1061299 | Zbl 0703.06003
[2] Beran, L.: Remarks on special ideals in lattices. Comment. Math. Univ. Carol. 35 (1994), 607-615. MR 1321231 | Zbl 0812.06002
[3] Beran, L.: Length of ideals in lattices. Collect. Math. 46 (1995), 21-33. MR 1366126 | Zbl 0842.06006
[4] Beran, L.: Some types of implicative ideals. Comment. Math. Univ. Carol. 39 (1998), 219-225. MR 1651930 | Zbl 0938.06004
[5] Grätzer, G.: General Lattice Theory. Birkhäuser, second edition (1998). MR 1670580
[6] Halaš, R.: Characterization of distributive sets by generalized annihilators. Arch. Math. (Brno) 30 (1994), 25-27. MR 1282110
[7] Halaš, R.: Decompositions of directed sets with zero. Math. Slovaca 45 (1995), 9-17. MR 1335835
[8] Halaš, R., Rachůnek, J.: Polars and prime ideals in ordered sets. Discuss. Math., Algebra Stoch. Methods 15 (1995), 43-50. MR 1369627
[9] Larmerová, J., Rachůnek, J.: Translations of distributive and modular ordered sets. Acta Univ. Palack. Olomouc, Fac. Rer. Nat. 91, Math. 27 (1988), 13-23. MR 1039879
[10] Rav, Y.: Semiprime ideals in general lattices. J. Pure Appl. Algebra 56 (1989), 105-118. DOI 10.1016/0022-4049(89)90140-0 | MR 0979666 | Zbl 0665.06006
Partner of
EuDML logo