[go: up one dir, main page]

Persistente Homologie

algebraische Methode, um topologische Eigenschaften von Daten zu erkennen

Persistente Homologie ist eine algebraische Methode, um topologische Eigenschaften von Daten zu erkennen.

Daten sind in der Regel als diskrete Punktmengen gegeben und haben insoweit keine interessante Topologie. Man kann ihnen aber ihren Vietoris-Rips-Komplex zukommen lassen, indem man für eine feste Zahl Punkte vom paarweisen Abstand kleiner zu Simplizes zusammenfasst. Für sehr kleine erhält man eine diskrete Menge und für sehr große einen vollständigen Simplizialkomplex mit trivialer (d. h. zusammenziehbarer) Topologie. Für dazwischenliegende Werte von können "Löcher" (nichttriviale Elemente in Homologiegruppen) erscheinen und wieder verschwinden. Die "Persistenz" einer Homologieklasse besteht aus Intervallen : die Homologieklasse erscheint beim Maßstab und verschwindet wieder beim Maßstab . Die Gesamtheit dieser Intervalle nennt man den "Strichcode" der Homologieklasse. Die Strichcodes einer Datenmenge sind stabil unter geringfügigen Störungen der Daten.

Definition

Bearbeiten

Gegeben sei ein Simplizialkomplex   mit einer Filtrierung

 .

Für   induziert die Inklusion   einen Homomorphismus   der simplizialen Homologiegruppen für jede Dimension  . Man sagt, dass eine Homologieklasse   in   geboren wird, wenn sie nicht im Bild von   ist, und man sagt, dass sie in   stirbt, wenn   und  . Man bezeichnet dann   als Persistenz der Homologieklasse   und   als ihr Persistenzintervall.

Das Persistenzdiagramm (in Dimension  ) ordnet jeder Zahl   die (Multi-)Menge der Persistenzintervalle   von Homologieklassen   zu.

Literatur

Bearbeiten
  • H. Edelsbruner, J. Harer: Persistent homology—a survey. Surveys on discrete and computational geometry, 257–282, Contemp. Math., 453, Amer. Math. Soc., Providence, RI, 2008.
  • H. Edelsbrunner, D. Morozov: Persistent homology: theory and practice. European Congress of Mathematics, 31–50, Eur. Math. Soc., Zürich, 2013.