Hafnium
Eigenschaften | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Allgemein | |||||||||||||||||||||||||||||||||||||||||||||||||
Name, Symbol, Ordnungszahl | Hafnium, Hf, 72 | ||||||||||||||||||||||||||||||||||||||||||||||||
Elementkategorie | |||||||||||||||||||||||||||||||||||||||||||||||||
Gruppe, Periode, Block | 4, 6, d | ||||||||||||||||||||||||||||||||||||||||||||||||
Aussehen | stahlgrau | ||||||||||||||||||||||||||||||||||||||||||||||||
Massenanteil an der Erdhülle | 4,9 · 10−4 | ||||||||||||||||||||||||||||||||||||||||||||||||
Atomar | |||||||||||||||||||||||||||||||||||||||||||||||||
Atommasse | 178,49 u | ||||||||||||||||||||||||||||||||||||||||||||||||
Atomradius (berechnet) | 155 (208) pm | ||||||||||||||||||||||||||||||||||||||||||||||||
Kovalenter Radius | 150 pm | ||||||||||||||||||||||||||||||||||||||||||||||||
Elektronenkonfiguration | [Xe]4f14 5d2 6s2 | ||||||||||||||||||||||||||||||||||||||||||||||||
1. Ionisierungsenergie | 658,5 | ||||||||||||||||||||||||||||||||||||||||||||||||
2. Ionisierungsenergie | 1440 | ||||||||||||||||||||||||||||||||||||||||||||||||
3. Ionisierungsenergie | 2250 | ||||||||||||||||||||||||||||||||||||||||||||||||
4. Ionisierungsenergie | 3216 | ||||||||||||||||||||||||||||||||||||||||||||||||
Physikalisch | |||||||||||||||||||||||||||||||||||||||||||||||||
Aggregatzustand | fest | ||||||||||||||||||||||||||||||||||||||||||||||||
Modifikationen | zwei (α-/β-Hf) | ||||||||||||||||||||||||||||||||||||||||||||||||
Kristallstruktur | hexagonal | ||||||||||||||||||||||||||||||||||||||||||||||||
Dichte | 13310 | ||||||||||||||||||||||||||||||||||||||||||||||||
Mohshärte | 5,5 | ||||||||||||||||||||||||||||||||||||||||||||||||
Magnetismus | paramagnetisch[1] | ||||||||||||||||||||||||||||||||||||||||||||||||
Schmelzpunkt | 2506 K (2233 °C) | ||||||||||||||||||||||||||||||||||||||||||||||||
Siedepunkt | 4876 (4603 °C) | ||||||||||||||||||||||||||||||||||||||||||||||||
Molares Volumen | 13,44 · 10−6 m3·mol−1 | ||||||||||||||||||||||||||||||||||||||||||||||||
Verdampfungsenthalpie | 630 | ||||||||||||||||||||||||||||||||||||||||||||||||
Schmelzenthalpie | 25,5 kJ·mol−1 | ||||||||||||||||||||||||||||||||||||||||||||||||
Dampfdruck | 0,00013[2] Pa bei 1970 K | ||||||||||||||||||||||||||||||||||||||||||||||||
Schallgeschwindigkeit | 3010 m·s−1 bei 293,15 K | ||||||||||||||||||||||||||||||||||||||||||||||||
Spezifische Wärmekapazität | 140 J·kg−1·K−1 | ||||||||||||||||||||||||||||||||||||||||||||||||
Elektrische Leitfähigkeit | 3,12 · 106 S·m−1 | ||||||||||||||||||||||||||||||||||||||||||||||||
Wärmeleitfähigkeit | 23 W·m−1·K−1 | ||||||||||||||||||||||||||||||||||||||||||||||||
Chemisch | |||||||||||||||||||||||||||||||||||||||||||||||||
Oxidationszustände | 4 | ||||||||||||||||||||||||||||||||||||||||||||||||
Normalpotential | −1,505 V (HfO2 + 4 H+ + 4 e− → Hf + 2 H2O) | ||||||||||||||||||||||||||||||||||||||||||||||||
Elektronegativität | 1,3 (Pauling-Skala) | ||||||||||||||||||||||||||||||||||||||||||||||||
Isotope | |||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||
Weitere Isotope siehe Liste der Isotope | |||||||||||||||||||||||||||||||||||||||||||||||||
NMR-Eigenschaften | |||||||||||||||||||||||||||||||||||||||||||||||||
Sicherheitshinweise | |||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen. |
Hafnium ist ein chemisches Element im Periodensystem der Elemente mit dem Symbol Hf und der Ordnungszahl 72. Benannt ist es nach dem lateinischen Namen der Stadt Kopenhagen, Hafnia, in der das Element entdeckt wurde. Es ist ein silbergrau glänzendes, korrosionsbeständiges Übergangsmetall der Titangruppe. Hafnium besitzt sehr ähnliche Eigenschaften wie das im Periodensystem direkt darüber gelegene Zirconium. Biologische Funktionen sind nicht bekannt, es kommt normalerweise nicht im menschlichen Organismus vor und ist nicht toxisch[3].
Geschichte
Hafnium war eines der letzten stabilen Elemente des Periodensystems, das entdeckt wurde. Den ersten Hinweis auf die Existenz eines weiteren Elements zwischen Lutetium und Tantal ergab sich aus dem 1912 gefundenen Moseleysches Gesetz. Henry Moseley versuchte 1914, das unbekannte, aber nach diesem Gesetz zu erwartende Element mit der Ordnungszahl 72 in Proben von Mineralen der seltenen Erden (heute Lanthanoiden) zu finden. Er war damit aber nicht erfolgreich.[4]
Niels Bohr sagte in seiner 1922 veröffentlichten Arbeit zur Atomtheorie voraus, dass die Lanthanoiden-Reihe mit Lutetium zu Ende sei und dass damit das Element 72 Ähnlichkeit mit Zirconium haben müsse. Schon ein Jahr später konnte Hafnium nachgewiesen werden: 1923 wurde es in Kopenhagen von Dirk Coster und George de Hevesy durch Röntgenspektroskopie in norwegischem Zirkon entdeckt. Weitere Untersuchungen anderer Mineralien zeigten, dass Hafnium immer in zirconiumhaltigen Mineralien enthalten ist. Die Trennung vom Zirconium gelang Jantzen und Hevesy durch wiederholte Kristallisation der Diammonium- und Dikaliumfluoride der beiden Elemente. Elementares Hafnium konnte danach durch Reduktion mit Natrium gewonnen werden.
Vorkommen
Hafnium ist mit einem Gehalt von 4,9 ppm an der kontinentalen Erdkruste[5] ein auf der Erde nicht sehr häufiges Element. In der Häufigkeit ist es damit vergleichbar mit den Elementen Brom und Caesium und häufiger als die schon lange bekannten Gold und Quecksilber. Hafnium kommt weder gediegen noch in eigenen Mineralen vor. Alle Zirconium-Minerale, wie Zirkon und Baddeleyit sind dagegen immer hafniumhaltig, die Menge an Hafnium beträgt meist 2 % des Zirconiumgehaltes (1–5 Gewichtsprozent Hafnium). Eines der wenigen Minerale, die mehr Hafnium als Zirconium enthalten ist die Zirkon-Varietät Alvit [(Hf,Th,Zr)SiO4].
Analog zu Zirconium sind die wichtigsten Lagerstätten an Hafnium die Zirkon-Lagerstätten in Australien und Südafrika. Die Reserven werden auf 1,1 Millionen Tonnen (gerechnet als Hafniumoxid) geschätzt[6] Vorlage:Absatz-L
Gewinnung und Darstellung
Um Hafnium zu gewinnen muss dieses von Zirconium abgetrennt werden. Dieses ist nicht während des Herstellungsprozesses möglich, sondern erfolgt in einem getrennten Verfahren. Für die Trennung werden Extraktionsverfahren angewendet. Dabei wird die unterschiedliche Löslichkeit bestimmter Zirconium- und Hafniumsalze in speziellen Lösungsmitteln ausgenutzt. Beispiele hierfür sind die verschiedenen Löslichkeiten der Nitrate in Tri-n-butylphosphat und die der Thiocyanate in Methylisobutylketon. Andere mögliche Trennungsmöglichkeiten sind Ionenaustauscher und die fraktionierte Destillation von geeigneten Verbindungen.
Das abgetrennte Hafnium kann anschließend nach dem Kroll-Prozess zunächst in Hafnium(IV)-chlorid überführt werden und anschließend mit Natrium oder Magnesium zu elementarem Hafnium reduziert werden.
Wird noch reineres Hafnium benötigt, kann das Van-Arkel-de-Boer-Verfahren angewendet werden. Dabei reagiert während des Erhitzens im Autoklaven zunächst das Hafnium mit Iod zu Hafnium(IV)-iodid. Dieses wird an einem heißen Draht wieder zu Hafnium und Iod zersetzt.
Hafnium wird nur in geringen Mengen im Maßstab von 100 Tonnen[3] produziert. Es wird nicht eigens hergestellt, sondern fällt als Nebenprodukt bei der Gewinnung von Hafnium-freiem Zirconium für Brennstäbe an.
Eigenschaften
Physikalische Eigenschaften
Hafnium ist ein silbrig-glänzendes Schwermetall von hoher Dichte (13,31 g/cm3)[3]. Es kristallisiert temperaturabhängig in zwei verschiedenen Modifikationen. Bei Normalbedingungen kristallisiert es in einer hexagonal-dichtesten Kugelpackung (α-Hf) und ist damit isotyp zu α-Zr, oberhalb von 1775 °C[3] geht es in eine kubisch-raumzentrierte Struktur über (β-Hf).
Liegt Hafnium in einer hohen Reinheit vor, ist es relativ weich und biegsam. Es ist leicht durch Walzen, Schmieden und Hämmern zu bearbeiten. Sind dagegen Spuren von Sauerstoff, Stickstoff oder Kohlenstoff im Material vorhanden, wird es spröde und schwer zu verarbeiten. Der Schmelz- und der Siedepunkt des Hafniums sind mit 2227 °C beziehungsweise 4450 °C[3] die höchsten in der Gruppe (Schmelzpunkt: Titan: 1667 °C, Zirconium: 1857 °C).
In fast allen weiteren Eigenschaften ähnelt das Metall seinem leichteren Homologen Zirconium. Dies wird durch die Lanthanoidenkontraktion verursacht, die ähnliche Atom- und Ionenradien bedingt (Atomradien Zr: 159 pm, Hf: 156 pm[3]). Eine Ausnahme ist die Dichte, bei der Zirconium mit 6,5 g/cm3 einen deutlich kleineren Wert besitzt. Ein technisch wichtiger Unterschied besteht darin, dass Hafnium 600 mal besser Neutronen absorbieren kann. Dies ist der Grund dafür, dass für den Einsatz von Zirconium in Kernkraftwerken das Hafnium abgetrennt werden muss.
Hafnium ist unterhalb der Sprungtemperatur von 0,08 K supraleitend[3].
Chemische Eigenschaften
Hafnium ist ein unedles Metall, das beim Erhitzen mit Sauerstoff zu Hafniumdioxid reagiert. Auch andere Nichtmetalle, wie Stickstoff, Kohlenstoff, Bor und Silicium bilden unter diesen Bedingungen Verbindungen. Bei Raumtemperatur bildet sich schnell eine dichte Oxidschicht, die das Metall passiviert und so vor weiterer Oxidation schützt.
In den meisten Säuren ist Hafnium wegen der Passivierung unter Normalbedingungen nicht löslich, lediglich Flusssäure und Königswasser greifen das Metall an. Auch in wässrigen Basen ist es nicht löslich.
Isotope
Von Hafnium sind insgesamt 35 Isotope und 18 Kernisomere[8] von 153Hf bis 188Hf bekannt. Natürliches Hafnium ist ein Mischelement, das aus insgesamt sechs verschiedenen Isotopen besteht. Das häufigste Isotop ist mit einer Häufigkeit von 35,08 % 180Hf. Es folgen 178Hf mit 27,28 %, 177Hf mit 18,61 %, 179Hf mit 13,62 %, 176Hf mit 5,27 % und 174Hf mit 0,16 %. Als einziges natürliches Isotop ist 174Hf schwach radioaktiv, es ist ein Alphastrahler mit einer Halbwertszeit von 2 · 1015 Jahren. Die Isotope 177Hf und 179Hf können mit Hilfe der NMR-Spektroskopie nachgewiesen werden.
Das Kernisomer 178 2mHf ist mit einer Halbwertszeit von 31 Jahren[8] langlebig und sendet zugleich beim Zerfall eine starke Gammastrahlung von 2,45 MeV[8] aus. Dies ist die höchste Energie, die ein über langere Zeit stabiles Isotop aussendet. Eine mögliche Anwendung besteht darin, dieses Kernisomer als Quelle in starken Lasern zu verwenden[9].
Verwendung
Auf Grund seiner schwierigen Gewinnung wird Hafnium nur in geringen Mengen verwendet. Das Haupteinsatzgebiet ist die Kerntechnik, in der Hafnium als Steuerstab zur Regulierung der Kettenreaktion in Kernreaktoren eingesetzt wird. Die Verwendung von Hafnium hat gegenüber anderen möglichen neutronenabsorbierenden Substanzen einige Vorteile. So ist das Element sehr korrosionsbeständig und bei der Kernreaktion mit den Neutronen entstehen Hafniumisotope, die ebenfalls hohe Absorptionsquerschnitte besitzen[10]. Auf Grund des hohen Preises wird es vor allem für militärische Anwendungen, beispielsweise für Reaktoren in Atom-U-Booten, verwendet.
Es existieren noch einige weitere Verwendungsmöglichkeiten. So reagiert Hafnium schnell mit geringen Mengen Sauerstoff und Stickstoff und kann darum als Gettersubstanz eingesetzt werden, um kleinste Mengen dieser Stoffe aus Ultrahochvakuum-Anlagen zu entfernen. Beim Verbrennen sendet das Metall ein sehr helles Licht aus. Deshalb ist es möglich, Hafnium in Blitzlichtlampen mit einer besonders hohen Lichtausbeute einzusetzen. Mehrere sehr stabile und hochschmelzende Verbindungen, insbesondere Hafniumnitrid und Hafniumcarbid können aus den Elementen hergestellt werden.
In Legierungen mit Metallen wie Niob, Tantal, Molybdän und Wolfram wirkt ein Zusatz von 2 % Hafnium festigkeitssteigernd. Es entstehen besonders stabile, hochschmelzende und hitzebeständige Werkstoffe.
Sicherheitshinweise
Wie viele andere Metalle ist Hafnium in feinverteiltem Zustand leichtentzündlich und pyrophor. In kompaktem Zustand ist es dagegen nicht brennbar. Das Metall ist nicht toxisch. Aus diesen Gründen sind für den Umgang mit Hafnium keine besonderen Sicherheitsvorschriften zu beachten.
Verbindungen
Hafnium bildet eine Reihe von Verbindungen. Diese sind meist Salze oder Mischkristalle und besitzen häufig hohe Schmelzpunkte. Die wichtigste Oxidationsstufe des Hafnium ist +IV, es sind aber auch Verbindungen in geringeren Oxidationsstufen, von 0 bis +III, in Komplexen auch kleiner 0 bekannt.
Hafnium(IV)-oxid
Hafnium(IV)-oxid ist ein sehr stabiles und hochschmelzendes Salz. Es besitzt eine hohe Dielektrizitätskonstante von 25 (zum Vergleich: Siliciumdioxid: 3,9)[11]. Darum ist ein Einsatz als high-k-Dielektrikum als Steueranschluss (Gate) für Mikroprozessoren möglich. Durch den Einsatz von Hafnium(IV)-oxid ist es möglich, die Schaltkreise zu verkleinern, da die Dicke der Isolatorschichten deutlich verringert werden kann. Der gesamte Transistor hat damit nur noch eine Größe von 45 nm. Dies wird von einigen Halbleiterherstellern, wie Intel oder IBM schon angewendet[12].
Weitere Hafniumverbindungen
Hafniumcarbid zählt zu den Substanzen mit den höchsten Schmelzpunkten überhaupt. Zusammen mit Hafniumnitrid und Hafniumborid gehört es zu den Hartstoffen.
Es sind eine Reihe von Halogenverbindungen des Hafniums bekannt. In der Oxidationsstufe +IV existieren sowohl das Fluorid, als auch Chlorid, Bromid und Iodid. Hafnium(IV)-chlorid und Hafnium(IV)-iodid spielen bei der Gewinnung des Hafniums eine Rolle. In den niederen Oxidationsstufen sind nur Chlor- und Bromverbindungen, sowie Hafnium(III)-iodid bekannt.
Das Difluorid Kaliumhexafluorhafnat K2HfF6 kann zur Abtrennung des Hafniums von Zirconium eingesetzt werden.
Einzelnachweise
Die Werte der atomaren und physikalischen Eigenschaften (Infobox) sind, wenn nicht anders angegeben, aus www.webelements.com (Hafnium) entnommen.
- ↑ Magnetic Susceptibility of Hafnium and Manganese in: Physical Review, 1955, 98, 4, 936–937
- ↑ a b c d Eintrag zu Hafnium-Pulver in der GESTIS-Stoffdatenbank des IFA (JavaScript erforderlich) , diese Angaben gelten nur für Pulver, in kompaktem Zustand keine Gefahrensymbole oder R/S-Sätze
- ↑ a b c d e f g Holleman-Wiberg: Lehrbuch der Anorganischen Chemie. 102. Auflage, de Gruyter, Berlin 2007, ISBN 978-3-11-017770-1.
- ↑ William H. Brock: Viewegs Geschichte der Chemie. Vieweg, Braunschweig 1997. ISBN 3-540-67033-5
- ↑ K. H. Wedepohl: The composition of the continental crust in: Geochimica et Cosmochimica Acta, 1995, 59, 7, 1217–1232.
- ↑ Zirconium und Hafnium bei usgs mineral resources
- ↑ K. Schubert: Ein Modell für die Kristallstrukturen der chemischen Elemente in: Acta Crystallographica, 1974, B30, S. 193–204
- ↑ a b c G. Audi, O. Bersillon, J. Blachot, A. H. Wapstra: The NUBASE evaluation of nuclear and decay properties. In: Nuclear Physics. Bd. A 729, 2003, S. 3–128.
- ↑ C. B. Collins: Nuclear resonance spectroscopy of the 31-yr isomer of Hf-178 in: Laser Physics Letters, 2005, 2, 3, 162–165.
- ↑ wissenschaft-online/Hafnium (Artikel aus: Lexikon der Chemie, Spektrum Akademischer Verlag, Heidelberg Berlin, 2001
- ↑ G. D. Wilk, R.M. Wallace, J.M. Anthony: High-κ gate dielectrics: Current status and materials properties considerations in: Journal of applied physics, 2001, 89, 10, 5243–5273.
- ↑ Pressemitteilung der Ruhr-Universität Bochum über Hafniumoxid
Literatur
- Holleman-Wiberg: Lehrbuch der Anorganischen Chemie. 102. Auflage, de Gruyter, Berlin 2007, ISBN 978-3-11-017770-1.
- N. N. Greenwood, A. Earnshaw: Chemie der Elemente. 1. Auflage, VCH Verlagsgesellschaft, 1988, ISBN-3-527-26169-9.