Total unzusammenhängender Raum

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
Die Druckversion wird nicht mehr unterstützt und kann Darstellungsfehler aufweisen. Bitte aktualisiere deine Browser-Lesezeichen und verwende stattdessen die Standard-Druckfunktion des Browsers.

Total unzusammenhängende Räume werden im mathematischen Teilgebiet der Topologie untersucht. In jedem topologischen Raum sind einelementige Teilmengen und die leere Menge zusammenhängend. Die total unzusammenhängenden Räume sind dadurch gekennzeichnet, dass es in ihnen keine weiteren zusammenhängenden Teilmengen gibt.

Das wohl bekannteste Beispiel ist die Cantor-Menge. Total unzusammenhängende Räume treten in vielen mathematischen Theorien auf.

Definition

Ein topologischer Raum heißt total unzusammenhängend, wenn es neben der leeren und den einelementigen Teilmengen keine weiteren zusammenhängenden Teilmengen gibt.

Beispiele

Eigenschaften

  • Unterräume und Produkte total unzusammenhängender Räume sind wieder total unzusammenhängend.[1]
  • Jede stetige Abbildung von einem zusammenhängenden Raum in einen total unzusammenhängenden Raum ist konstant, denn das Bild ist wieder zusammenhängend und daher einelementig.

Anwendungen

Boolesche Algebren

Nach dem Darstellungssatz von Stone gibt es zu jeder Booleschen Algebra einen bis auf Homöomorphie eindeutig bestimmten, total unzusammenhängenden, kompakten Hausdorffraum , so dass die Boolesche Algebra isomorph zur Algebra der offen-abgeschlossenen Teilmengen von ist.[2] Daher nennt man total unzusammenhängende, kompakte Hausdorffräume in diesem Zusammenhang auch Boolesche Räume.

C*-Algebren

Jede kommutative C*-Algebra ist nach dem Satz von Gelfand-Neumark isometrisch isomorph zur Algebra der stetigen Funktionen für einen bis auf Homöomorphie eindeutig bestimmten lokalkompakten Hausdorffraum . Es gilt[3]:

  • Eine kommutative, separable C*-Algebra ist genau dann AF-C*-Algebra, wenn total unzusammenhängend ist.

p-adische Zahlen

Die ganzen p-adischen Zahlen zu einer Primzahl sind bekanntlich als Reihen der Form mit darstellbar. Damit kann man mit identifizieren, was zu einem total unzusammenhängenden, kompakten Hausdorffraum macht. Dann ist der Körper der p-adischen Zahlen ein σ-kompakter, lokalkompakter, total unzusammenhängender Raum.

Einzelnachweise

  1. Philip J. Higgins: An Introduction to Topological Groups (= London Mathematical Society Lecture Note Series. Bd. 15). Cambridge University Press, London u. a. 1974 (recte 1975), ISBN 0-521-20527-1, Kapitel II.7, Satz 9.
  2. Paul R. Halmos: Lectures on Boolean Algebra. Springer, New York NY u. a. 1974, ISBN 0-387-90094-2, § 18, Theorem 6, Theorem 7.
  3. Kenneth R. Davidson: C*-Algebras by Example (= Fields Institute Monographs. Bd. 6). American Mathematical Society, Providence RI 1996, ISBN 0-8218-0599-1, Example III.2.5.