„Pelletheizung“ – Versionsunterschied

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
[gesichtete Version][gesichtete Version]
Inhalt gelöscht Inhalt hinzugefügt
Kritik: ergänzt um Triviales
Kritik: so eine Aussage möge man bitte belegen. Der CO2-Kreislauf ist immerhin geschlossen und CO2 wird auch freigesetzt, wenn man das Holz im Wald und dort vermodern lässt.
Zeile 176: Zeile 176:


Die [[Europäische Umweltagentur]] warnt, dass vermehrte Verbrennung von Biomasse in privaten Heizanlagen die Luftqualität verschlechtern könnte, da Holzrauch Feinstaub und Ruß enthält und giftige Stoffe wie etwa [[Dioxine]] enthalten kann.<ref>Air quality in Europe — 2017 report [http://www.apren.pt/contents/publicationsothers/small-airquality2017-15-29-1.pdf apren.pt] (PDF); European Environment Society; EEA Report No 13/2017, {{ISSN|1977-8449}}.</ref><ref>Timothy Spence: ''[https://www.euractiv.com/section/agriculture-food/news/doubts-cast-on-biofuels-air-quality-claims/ Doubts cast on biofuels’ air quality claims]''; bei euractiv.com</ref> Etwa von 2000 bis 2005 wurden Feinstaubreduktionen mittels emissionsärmerer Formen der Holzverbrennung durch eine Zunahme der Holzverfeuerungsanlagen zunichtegemacht. Die Feinstaubemissionen aus Holzfeuerungsanlagen überstiegen nach einer Untersuchung des [[Umweltbundesamt (Deutschland)|Umweltbundesamtes]] die Emissionen aus dem Straßenverkehr (nur Verbrennung) von 22.700&nbsp;Tonnen.<ref name="uba06">''Die Nebenwirkungen der Behaglichkeit: Feinstaub aus Kamin und Holzofen.'' Hintergrundpapier des Umweltbundesamtes, März 2006.</ref> {{Hauptartikel|Holzheizung#Emissionen von Holzheizungen}}
Die [[Europäische Umweltagentur]] warnt, dass vermehrte Verbrennung von Biomasse in privaten Heizanlagen die Luftqualität verschlechtern könnte, da Holzrauch Feinstaub und Ruß enthält und giftige Stoffe wie etwa [[Dioxine]] enthalten kann.<ref>Air quality in Europe — 2017 report [http://www.apren.pt/contents/publicationsothers/small-airquality2017-15-29-1.pdf apren.pt] (PDF); European Environment Society; EEA Report No 13/2017, {{ISSN|1977-8449}}.</ref><ref>Timothy Spence: ''[https://www.euractiv.com/section/agriculture-food/news/doubts-cast-on-biofuels-air-quality-claims/ Doubts cast on biofuels’ air quality claims]''; bei euractiv.com</ref> Etwa von 2000 bis 2005 wurden Feinstaubreduktionen mittels emissionsärmerer Formen der Holzverbrennung durch eine Zunahme der Holzverfeuerungsanlagen zunichtegemacht. Die Feinstaubemissionen aus Holzfeuerungsanlagen überstiegen nach einer Untersuchung des [[Umweltbundesamt (Deutschland)|Umweltbundesamtes]] die Emissionen aus dem Straßenverkehr (nur Verbrennung) von 22.700&nbsp;Tonnen.<ref name="uba06">''Die Nebenwirkungen der Behaglichkeit: Feinstaub aus Kamin und Holzofen.'' Hintergrundpapier des Umweltbundesamtes, März 2006.</ref> {{Hauptartikel|Holzheizung#Emissionen von Holzheizungen}}

Durch die Verbrennung von Holz wird in Jahrzehnten gespeichertes CO<sub>2</sub> schlagartig freigesetzt und es werden wieder Jahrzehnte zur Bindung dieser CO<sub>2</sub>-Menge als Holz benötigt. Insofern wird durch Umstieg auf Holz(pellet)heizungen der [[Treibhauseffekt]] nicht verringert sondern bleibt (unter Berücksichtigung derselben [[Heizwert]]&shy;erfordernisse bei Ersatz von Erdöl und Erdgas) durch diese Maßnahme kurzfristig unverändert, es tritt also ''keine'' rasche Treibhausgas''reduktion'' (gemäß dem [[Übereinkommen von Paris|Weltklimaabkommen]]) ein.


(Weitere Kritik findet sich im Artikel [[Holzpellet#Kritik|Holzpellet]].)
(Weitere Kritik findet sich im Artikel [[Holzpellet#Kritik|Holzpellet]].)

Version vom 11. Juni 2019, 19:17 Uhr

Pelletheizung eines Wohnhauses mit Brennstoffzufuhr über Schnecke (Metallrohr links)
die verschiedenen Schneckendurchmesser

Eine Pelletheizung (oder auch Pelletsheizung) ist eine Heizung, in deren Heizkessel zumeist Holzpellets (kleine Presslinge aus Holzspänen und Sägemehl) vergast werden. Weitere pelletierte Brennstoffe wie Strohpellets, Halmpellets, Torfpellets, Pellets aus Olivenkernen und Olivenpresstrestern,[1][2] Kokosnussschalen oder anderen biogenen Reststoffen[3] kommen auch zum Einsatz.

Zentralheizungen mit Holzpellets als erneuerbare Energiequelle sind mit Öl- und Gasheizungen vergleichbar und erreichen einen feuerungstechnischen Wirkungsgrad von über 90 %. Der Ausstoß von Feinstaub ist rohstoff- und prinzipbedingt höher als bei Öl- und Gasheizungen.

Arten

Modell einer Pelletheizung mit Pelletlager (links), Transportschnecke (silber, unten), Kessel (rechts), Pufferspeicher (silber, hinten) und Schornstein

Grundsätzlich sind Pelletheizungen als Anlagen für den Betrieb von zentralen Hausheizungssystemen inklusive Steuerungs- und Regelungstechnik (also Pellet-Zentralheizungen) von Pellet-Einzelöfen mit direkter Wärmeabgabe in den Wohnraum zu unterscheiden.

Einzelöfen

Pellet-Einzelöfen sind Anlagen im Leistungsbereich von max. 6–8 kW und weniger, die direkt im Wohnraum aufgestellt werden. Sie verfügen über einen kleinen Vorratsbehälter für Brennstoffe, der eine bis wenige Tagesrationen fasst. Brennstoffzufuhr und -zündung und die Regelung der Verbrennung werden automatisch gesteuert, die Ascheaustragung erfolgt von Hand. Die Wärme wird meist direkt an die Raumluft abgegeben. Wasserführende Öfen nutzen einen Teil der Energie, um Wasser zu erwärmen, das sich in Wassertaschen um die Brennkammer befindet. Damit kann die Leistung einer vorhandenen Zentralheizung unterstützt oder im Einzelfall ersetzt werden. Das Angebot an Pellet-Einzelöfen ist ähnlich vielfältig wie bei Scheitholzöfen, auch Ausführungen mit Sichtfenster auf das Feuer oder kombinierte Scheitholz-Pellet-Tischherde werden angeboten.

Zentralheizungen

Pellet-Zentralheizungen kommen für Nennwärmeleistungen bzw. den Wärmebedarf (= sogenannte Heizlast, Berechnung nach EN 12 831) ab 3,9 kW aufwärts in Betracht. Pelletheizungen eignen sich nicht nur für den Einsatz in Ein- und Zweifamilienhäusern (bis ca. 30 kW), sondern auch für größere Wohn- oder Betriebseinheiten; in letzterem Fall kommen größere Anlagen oder mehrere in Reihe geschaltete Pelletheizungen (Kaskadenanlagen) mit einigen hundert kW zum Einsatz. Hybrid- oder Kombianlagen können auch zusätzlich mit anderem Brennholz (wie Scheitholz oder Hackschnitzel) beschickt werden.

Pelletbrennersysteme laufen primär unter Volllast optimal und sind bis etwa 30 % der Nennleistung regelbar. Kurze Brennphasen wirken sich negativ auf die Brennstoffeffizienz aus, da bei Pelletheizungen die energetisch weniger effiziente Aufwärmphase länger ist als bei Öl- oder Gasfeuerung; entsprechend höher sind dann die Schadstoffemissionen. Abmilderung dieses Nachteils wird erreicht durch die Kombination von Pelletheizungen mit Wärmepuffersystemen, im Allgemeinen über Warmwasserspeicher.

Anbau-Pelletbrenner

Separate Pelletbrenner, die an einen bestehenden Öl- oder Holzkessel montiert werden, werden als preiswerte Alternative zu einer kompletten Heizungsumstellung angeboten. Die Effizienz in der Verbrennung ist bei diesen Lösungen allerdings verringert. Anders als bei auf Pellet abgestimmte Heizungen oder Öfen werden die Investitionskosten nicht mit öffentlichen Mitteln gefördert.

Verfahren

Schnittbild einer Pelletheizung mit Fallschachtfeuerung

Ähnlich wie bei Hackschnitzelheizungen wird der Brennstoff periodisch angeliefert und mittels Zuführeinrichtungen aus dem Pelletlager (Heizanlagen) oder dem Tagesbehälter (Einzelöfen) automatisch bedarfsgemäß in die Brennkammer eingebracht. Für die Verbrennung kommen in Holzheizungen übliche Brennkammern zum Einsatz. Mit der erzeugten Wärme wird bei Pellet-Zentralheizungen Wasser aus dem Heizkreislauf im Kessel der Pelletheizung erwärmt. Die Wärmeverteilung erfolgt genauso wie bei anderen Systemen der Zentralheizung durch das erwärmte Wasser. Anders als bei Öl- oder Gasheizungen ist bei Pelletheizungen die Einbindung eines Warmwasserspeichers in das Heizsystem sinnvoll oder sogar nötig, der die im Brennvorgang erzeugte Wärme bis zur Wärmeanforderung durch das Heizsystem verlustarm speichert oder die Wärmeabfuhr bis zum Auskühlen des Kessels sichert.

Brenner

Unterschubfeuerung
Brennkammer im Querschnitt

Die als Festbettreaktor ausgeführte Feuerungsanlage wird automatisch mit Brenngut versorgt. Die Steuerungs- und Regelungstechnik der Anlage führt den Brennstoff schrittweise in der Menge zu, die der benötigten Wärmeabgabe entspricht. Je nach Ausführung werden die zugeführten Holzpellets entweder mit Heißluftgebläsen automatisch entzündet, oder es wird im Brennraum dauerhaft ein Glutbett erhalten.

Holzpelletheizungen arbeiten mit unterschiedlichen Techniken der Beschickung: Heute aktuell sind die speziell für die Pelletverbrennung entwickelte Fallschacht- oder Pelletfeuerung, die Unterschubfeuerung, die Quereinschubfeuerung oder der Einsatz eines Walzenrostsystems in Verwendung.

  • Bei der Fallschachtfeuerung rutschen die Pellets über eine Fallrinne in einen Brennertopf. Durch die Verwendung eines Brennertopfs ist der Verbrennungsbereich exakt definiert, die Verbrennung kann daher genau gesteuert werden.
  • Bei der Unterschubfeuerung werden die Pellets mittels einer Förderschnecke von unten auf einen Brennteller gedrückt, verbrennen dort und die übrig bleibende Asche fällt über den Tellerrand in den darunterliegenden Aschebehälter.
  • Die Quereinschubfeuerung funktioniert ähnlich wie die Unterschubfeuerung, nur dass der Brennstoff über eine Förderschnecke von der Seite auf den Brennteller geschoben wird. Dabei können sowohl der Brennteller als auch die Luftzufuhr zur Anpassung an Teilleistungen speziell ausgeformt werden.
  • Beim Walzenrostsystem fallen die Pellets von oben auf mehrere, sich langsam drehende Stahlscheiben mit geringem Zwischenraum. Ein Abstreifkamm reinigt bei jeder Umdrehung die Zwischenräume, so dass ebenfalls die Asche ungehindert nach unten durchfallen und Verbrennungsluft nach oben zugeführt werden kann.
Bild: Partitionsbrenner der Firma SOLARvent
Quereinschubbrenner mit besonderer Ausformung der Luftsteuerung (Partitionsbrenner BJ 2006)
  • Bei der Sturzbrandtechnik hingegen fallen die Pellets von oben auf einen Rost in einer Brennkammer. Die Flammen werden mit Hilfe eines Saugzuggebläses durch den Rost nach unten gezogen. Bei diesem System entsteht die geringste Aschemenge.

Um Effizienz und Schadstoffgehalt der Abluft zu optimieren, steuern moderne Pelletbrenner die Verbrennung entweder über einen Temperatur- oder Flammraumfühler in Verbindung mit einer über ein Saugzuggebläse stufenlos regelbaren Verbrennungsluftzuführung oder einer Lambda-Sonde. Die heißen Verbrennungsgase werden über einen Wärmeübertrager mit manueller oder automatischer Reinigung der Nachheizflächen bzw. Wirbulatoren (auch Turbulatoren genannt) in den Schornstein geführt.

Die anfallende Asche fällt in einen Aschekasten. Um die Intervalle, in denen eine Ascheentnahme nötig ist, zu verringern, wird die Asche teilweise im Aschekasten komprimiert. Vereinzelt werden auch Ascheaustragssysteme eingesetzt, bei denen die Brennrückstände mittels Förderschnecken in Sammelbehälter transportiert werden.

Wärmeübertragung und -Speicherung

Ebenso wie bei der Verwendung anderer Brennstoffe erhitzt die Verbrennung des Energieträgers im Kessel das Wasser, das als Wärmeüberträger eines Heiz- und/oder Warmwassersystems dient und die Wärmeenergie über Pumpen und Rohrleitungen an den Ort des Verbrauchs transportiert. Da eine weitestgehend vollständige Verbrennung der Holzpellets nur im Regelbetrieb möglich ist und während der Aufwärm- und der Ausbrandphase größere Verluste und höhere Emissionen entstehen, wird bei Heizanlagen das erwärmte Wasser in der Regel wie bei Scheitholzheizungen zunächst in einen Pufferspeicher geleitet, von wo es von den Verbrauchern je nach Bedarf abgerufen wird. So werden ausreichend lange unterbrechungsfreie Feuerungsperioden gewährleistet.

Messung, Steuerung und Regelung

Die Mess-, Steuer- und Regeltechnik der Pelletheizung ist in der Regel aufwändiger als die vergleichbarer Heizsysteme mit fossilen Brennstoffen. Zum einen erfordert die Einbindung eines oder mehrerer Wärmespeicher eine Regelung der Warmwasserspeicherung, -abgabe und -nachlieferung, zum anderen ist die Regelung von Brennstoffzufuhr, Brennluftzufuhr und Feuerung aufwendiger.

Sicherheitseinrichtungen

Wegen der Besonderheiten des Brennstoffs verfügen Pelletheizungen über andere Sicherheitseinrichtungen als Öl- oder Gasbrenner. So sind alle modernen Holzpelletheizungen mit einer Rückbrandsicherung ausgestattet, die einen Rückbrand in den Zubring-/Lagerbereich der Pellets unmöglich macht. Unterdruckregelungen im Feuerraum verhindern das Austreten giftiger oder brennbarer Gase in den Heizungsraum, ein Überhitzungsschutz bei manchen Anlagen > 25 kW oder Kombikessel wird durch Sicherheitswärmetauscher ermöglicht, die bei Überhitzung automatisch kaltes Wasser durch einen Wärmetauscher leiten.

Leistungsbereich und Wirkungsgrad

Pelletheizungen sind in allen Leistungsbereichen ab ca. 3,9 kW verfügbar, als Einzelöfen zwischen ca. 4 und 20 kW. Die meisten heute verfügbaren Anlagen verfügen über eine Leistungsregelung über die Brennstoff- und Verbrennungsluftzufuhr, so dass sie sowohl bei Volllast als auch bei Teillast betrieben werden können. Derzeit erreichen Pelletkessel bei Volllastbetrieb (Nennwärmeleistung) im Heizwert-Betrieb einen feuerungstechnischen Wirkungsgrad von rund 85–95 %. Mit Pelletskesseln in Brennwert-Technik können Kesselwirkungsgrade bis zu ca. 106 % erreicht werden. Hierbei wird durch die Kondensation des Wasserdampfes in den Abgasen zusätzlich die Verdampfungsenergie (zumindest teilweise) zurückgewonnen. Dadurch erreicht man eine Abgastemperatur von nur 30 °C-40 °C. Als Material für den dafür notwendigen Wärmetauscher kommen korrosionsbeständige Materialien wie Edelstahl oder Graphit zum Einsatz. Es sind besondere Maßnahmen im Kamin und die Abführung des so kondensierten Wassers nötig (350 Liter pro Tonne Pellet).

Von wenigen Ausnahmen abgesehen sinkt der Wirkungsgrad ab, wenn der Pelletskessel im Teillastbereich arbeitet. Die hier beschriebenen feuerungstechnischen Wirkungsgrade können stark von den tatsächlichen Anlagenwirkungsgraden abweichen, aus dem Grund spielt das Anlagen-Konzept eine große Rolle. Der Einsatz eines hinreichend großen Pufferspeichers ist sinnvoll.

Automatisierungsgrad, Betreuung und Wartung

Geöffneter Pelletkessel. Kreisförmig angeordnete Rauchgas­züge (hier 12) im Wärmetauscher­bereich. Um die sich an den Rohrwänden absetzenden Verbrennungs­rückstände zu entfernen, sind Schraubenfedern eingelassen, die elektromotorisch über die Welle in regelmäßigen Abständen bewegt werden. Ein Großteil der Aschenreste fällt so in den Verbrennungsraum zurück.

Viele Vorgänge moderner Pelletheizungen laufen automatisch ab. Notwendige regelmäßige Arbeiten an der Heizung sind Befüllung des Lagers, Entnahme der Asche und, bei einfacheren Modellen, die Reinigung der Rauchzüge. Für regelmäßige Reinigungs- und Wartungsarbeiten sind gegenüber Öl- oder Gasheizungen in der Regel kürzere Intervalle notwendig. Üblich sind Abstände von mehreren Wochen (Ascheentsorgung) oder einigen Monaten (Reinigung des Verbrennungsraumes), für einzelne Pellet-Zentralheizungen genügen aufgrund von Weiterentwicklungen inzwischen jährliche Betreuungsintervalle. Eine den Öl- oder Gasheizungen vergleichbare Bedienerfreundlichkeit ist ein wichtiges Entwicklungsziel von Herstellern.

Rachgaszüge von der Seite

Brennstoffbezug

On-Board Wiegesystem eines Silofahrzeugs für Holzpellets

Der Brennstoff wird als Sackware (15–20 kg) zur händischen Befüllung, in 1–2 m³ großen Kunststofftüten (Bigbags) oder lose angeboten. Während Sackware vor allem für Einzelöfen oder Kleinstanlagen in Frage kommt, setzt die Nutzung von Bigbags entsprechende Aufhängesysteme und Hubtechnik voraus.

Die Anlieferung loser Holzpellets erfolgt meist durch ähnliche Silofahrzeuge wie die Lieferung von Futterpellets. Die Pellets werden eingeblasen, außer bei staubdichten Sacksilos, und bei Lagerraumen wird dabei üblicherweise gleichzeitig Luft abgesogen, um die Staubbelastung zu vermeiden. Typische Zustellmengen für Endverbraucher liegen bei 3–10 Tonnen.

Lagerung und Austragung

Tages-Vorratsbehälter

Die Holzpellets werden in loser Schüttung in einem Tank oder Lagerraum gelagert und mittels eines Fördersystems dem Brenner zugeführt. Der Lagerraum muss trocken sein, da die Pellets stark hygroskopisch auf Mauer- oder zu hohe Luftfeuchte während der Lagerung mit Zerbröseln reagieren. Bei feuchten Räumen muss zur Sicherung der Pelletqualität auf dichte Tanksysteme zurückgegriffen werden.

Im Vergleich zu Öl benötigen Holzpellets etwa das dreifache Lagervolumen. Die Anforderung an den Lagerraum ist technisch geringer, da Pellets im Unterschied zu Heizöl keine wassergefährdenden Stoffe sind.

Der Boden wird in Trichterform – üblicherweise in Holzkonstruktion – errichtet, an dessen unterem Ende der Einlass einer Schnecke oder Entnahmesonden für ein Gebläse zu finden sind. Entnahmestellen können redundant ausgelegt werden, um Störungen vorzubeugen. Alternativ zum Lagerraum mit Trichterboden gibt es vorgefertigte Tanks aus Gewebe oder Stahlblech. Wenn im Gebäude kein ausreichender Raum vorhanden ist, können vergrabene Erdtanks oder freistehende Silos eingesetzt werden.

Zur Beschickung können Riesel-, Sauggebläse- oder Schnecken­systeme benutzt werden. Die Wahl hängt primär von der Entfernung des Lagers zum Kesselraum ab, für Entfernungen über 2 m sind meist mehrstufige oder flexible Schneckenförderungen nötig. Gebläsesysteme können flexibel eingesetzt werden und fördern bis über 20 m. Die Austragung aus dem Lagerraum oder -behälter wird unterstützt durch einen schrägen Behälterboden oder Trichterauslauf.

Brennersysteme mit aktiver Austragungssteuerung versorgen sich selbst mit der benötigten Brennstoffdosis. Anderenfalls ist zusätzlich noch ein kleiner Zwischenspeicher nötig, aus dem sich der Brenner bedient.

Bei fehlerhafter Belüftung kann es zu Kohlenmonoxidvergiftungen im Lagerraum kommen.

Entwicklung

Bestand an Pelletkesseln in Österreich
Jahr Anzahl
1997
  
425
1998
  
1.746
1999
  
3.874
2000
  
7.340
2001
  
12.272
2002
  
16.764
2003
  
21.957
2004
  
28.034
2005
  
36.908
2006
  
47.375
2007
  
51.290
2008
  
62.391
2009
  
70.837
2010
  
78.978
2011
  
89.378
2012
  
101.754
Kleinfeuerungsanlagen < 100 kW, Jahresende[4]

Pellets als gepresste Sägespäne zur energetischen Nutzung und Pellet-Kaminöfen wurden in den 1970er Jahren in den USA entwickelt. Seit dem Ende der 1970er Jahre stiegen europäische Heizkesselhersteller, vor allem in Skandinavien und Österreich, in die Entwicklung der Pelletheizung ein. Der Markt für Holzpelletheizungen in Deutschland entwickelte sich erst später, nachdem 1997 die Verwendung von Holzpellets in Deutschland freigegeben wurde. Heute ist Deutschland der umsatzstärkste Absatzmarkt für Holzpelletheizungen.[5]

In Österreich liegt der Anteil von Pelletheizungen im Neubau nach Branchenberichten bei 35 %, der Bestand an Pelletheizungen steigt jährlich um mehr als 10 %, derzeit (Januar 2013) liegt er bei knapp mehr als 100.000 Anlagen. Mit 12,6 Pelletheizungen pro 1.000 Einwohner hat Österreich die höchste Dichte an Pelletheizungen in Europa.[4] In Deutschland wurden von 1999 bis 2008 rund 100.000 Pelletanlagen installiert.

Wirtschaftlichkeit und Betriebskosten

Die Anschaffungskosten einer Pelletanlage sind höher als vergleichbarer Gas- und Ölheizungen, aber die Betriebskosten sind – je nach Brennstoff und aktuellem Brennstoffpreis – in Mitteleuropa häufig günstiger als bei fossilen Brennstoffen. Bei größeren Anlagen sinkt der Anteil der Investitionskosten gegenüber den Betriebskosten, so dass dort eine Kostenersparnis bereits nach weniger Betriebsjahren einsetzt als bei Kleinanlagen. Wiederum stehen für die Wärmeversorgung größerer Objekte weitere regenerative Alternativen zur Verfügung, mit gegenüber Pelletheizungen noch geringeren Betriebskosten, darunter Hackschnitzelheizungen oder Abwärme von Biogasanlagen. Derzeit wirken sich die zur Verfügung stehenden finanziellen Förderungen zugunsten von Pelletheizungen aus.

Siehe auch: Gebäudeheizung – zur Wirtschaftlichkeitsberechnung und Dimensionierung von Heizanlagen im Allgemeinen

Förderung

  • In Deutschland wird vom Bundesministerium für Wirtschaft und Energie der Einbau von Pelletheizungen im Rahmen eines Marktanreizprogramms (MAP) gefördert. Der Zuschuss beträgt 1400 € für Pelletöfen mit Wassertasche (wasserführende Öfen), 2400 € für Pelletkessel ohne Pufferspeicher (Kesselleistung 5 bis 66,6 kW) und 2900 € für Pelletkessel mit neu errichtetem Pufferspeicher mit mindestens 30 Litern Inhalt pro kW max. Kesselleistung (hier 5 bis 80,5 kW). Zusätzliche Boni werden gewährt, wenn gleichzeitig die Installation einer förderfähigen thermischen Solaranlage (Bivalente Heizung) und/oder einer Anlage zur solaren Warmwasser­bereitung erfolgt oder die Energieeffizienz (Wärmedämmung) des beheizten Objektes auf einen bestimmten Standard gebracht wird.[6] Der Einbau eines Abgaswärmetauschers zur Steigerung des Wirkungsgrades und/oder eines Partikelfilters zur Abscheidung des im Abgas enthaltenen Feinstaubs wird mit einer zusätzlichen Innovationsförderung unterstützt.
  • In Österreich gibt es für neue Zentralheizungsanlagen oder die Umstellung auf Pelletheizung Zuschüsse von Bund, den Bundesländern und einzelnen Gemeinden.
  • In der Schweiz werden Holzpelletheizungen ebenfalls gefördert. Dies ist kantonal unterschiedlich geregelt.
  • In Belgien zahlt die Wallonische Region 2008–2009 folgende Prämien je Anlage: 1.750 € bis 50 kW (+35 € je kW bis 100 kW), 3.500 € für 100 kW (+18 € je kW bis 500 kW), 10.700 € für 500 kW (+8 € je kW bis maximal 15.000 €).

Brennstoff

Holzpellets

Holzpellets (DIN plus) haben einen Heizwert von 5 kWh/kg, und ein Öläquivalent von 2,16 kg/l bzw. 3,33 l/l OE. Der Energiegehalt von einem Kilogramm Pellets kommt damit dem eines halben Liters Heizöl gleich, an Volumen (in Schüttraummetern) einem drittel Liter.

Preisentwicklung

Auf dem Pelletmarkt hat es in den vergangenen Jahren starke Zuwächse bei Angebot und Nachfrage gegeben. Nach einem anfänglich recht hohen Preis nach Markteinführung Ende der 1990er-Jahre, einer Phase relativ niedriger Preise um 3,5 Cent/kWh in Deutschland von 2002 bis 2005 und mehreren Monaten hoher Pelletpreise von mehr als 5 Cent/kWh im Winter 2006/07 wegen Angebotsengpässen haben die Hersteller ihre Kapazitäten stark ausgebaut, so dass der Handelswert seit 2007 auf ein Niveau zwischen ca. 3,5 und 4,5 Cent/kWh gesunken ist.[7] 2008 wurde das Minimum erreicht, seitdem steigt der Pelletpreis wieder. 2015 wurden Preise zwischen ca. 4,7 und 6,3 Cent/kWh erreicht.[8]

Im Vergleich zu Erdgas lässt sich die Preisentwicklung in Österreich objektiv anhand der Österreichischen Preisindices der Produkte beobachten: Im Jänner 2013 lag der Pelletpreisindex bei 139,91 gegenüber dem Basiswert Jänner 2006, das heißt, der Pelletpreis stieg in diesen 7 Jahren nur um das 1,40-fache[9] gegenüber dem Österreichischen Gaspreisindex von 143,75, d. h. der Gaspreis stieg in diesen 7 Jahren um das 1,44-fache[10] (zur Verdeutlichung der üblichen Preisschwankungen siehe Gaspreisentwicklung).[11]

Für die Anlieferung loser Ware kann eine Einblaspauschale von netto ca. 30 € erhoben werden; unter 3 Tonnen Liefermenge werden oft Mindermengenaufschläge fällig. Die 15-kg-Sackware kostet zwischen 7 und 20 % mehr als lose Ware und auch für Bigbags (750 bis 1000 kg) werden Aufschläge berechnet.

Rohstoffherkunft und Brennstoffalternativen

Neben den ursprünglich genutzten Sägespänen werden zur Pelletherstellung zunehmend Holzsortimente verwendet, die auch von der Papierindustrie und der holzverarbeitenden Industrie nachgefragt werden. Hierzu zählen neben Holzhackschnitzeln auch Waldrestholz und Stammholz. Die Zuwachsraten und Gesamtverbräuche der Holzpelletnutzung stärken die Nachfrage im Bereich der geringeren Holzqualitäten. Zu den Strategien zur Erhöhung des Rohstoffangebots zählen die Ganzbaumnutzung, die verstärkte Nutzung schnell wachsender Holzarten und die Anlage von Kurzumtriebsplantagen auf landwirtschaftlichen Flächen. Während die Energieholzerzeugung auf Ackerflächen aus Umweltsicht ein Gewinn sein kann[12], können bei der Intensivierung der Rohstoffausbeute im Forst Zielkonflikte mit Natur-, Umwelt- und/oder Bodenschutz auftreten. Zur Rohstoffherkunft siehe auch Holzpellet#Kritik.

Alternative Brennstoffe zum Betrieb von Pelletheizungen befinden sich in der Entwicklung und Erprobung. Neben Strohpellets sind Restwertpellets (z. B. Mühlenrückstände) und weitere pelletierte Biomasse wie z. B. Riesen-Chinaschilf oder Rapskuchen mögliche Rohstoffe. Nicht-holzartige Biomasse wird in Pelletform für Biomasseheizkraftwerke genutzt, ist jedoch derzeit für Pelletheizungen i. d. R. ungeeignet, da diese Brennstoffe sowohl bei der Verbrennungstechnik (z. B. wegen hohem Siliziumanteil und Versinterungen) als auch bei der Abgasreinigung einen erhöhten Aufwand benötigen. Getreide als Brennstoff benötigt hierfür geeignete Anlagen (Getreideverbrennung) und ist gemäß der Verordnung über kleine und mittlere Feuerungsanlagen in der Anwendung beschränkt.

Umweltverträglichkeit

Zentrale Aspekte bei der Umweltverträglichkeit der Pelletheizung sind die Rohstoffherkunft, die bei der Verbrennung entstehenden Schadstoffemissionen sowie die Klimabilanz.

Klimaschutz

Da Pellets aus dem nachwachsenden und damit CO2-neutralen Rohstoff Holz bestehen, kann deren Klimabilanz günstiger ausfallen als bei fossilen Brennstoffen. Die Menge an CO2, die bei der Verbrennung freigesetzt wird, entspricht genau der Menge CO2, die beim Wachstum des Holzes in dieses eingebunden wurde.[13] Auch bei Brennholz oder Holzpellets aus garantiert nachhaltiger Forstwirtschaft entsteht allerdings zunächst eine einige Jahrzehnte andauernde CO2-Belastung der Luft, da es Jahrzehnte braucht, bis die in relativ kurzer Zeit verbrannte Holzmenge alter, erntereifer Bäume auf einer entsprechend dimensionierten Ersatz-Waldfläche nachgewachsen und dadurch die entsprechende CO2-Menge der Luft wieder entzogen sein wird.

Der CO2-Ausstoß von Holzpellets beträgt etwa 42 g/kWh, bei Heizöl liegt der Wert bei etwa 303 g/kWh. Nach dem Globalen Emissions-Modell Integrierter Systeme (GEMIS) weist der Lebenszyklus von Holzpellets (inklusive Transporte und Materialvorleistung) als Koppelprodukt höherwertiger Holznutzung einen Aufwand nicht-erneuerbarer Energien von etwa 13 % der Nutzenergie aus.[14] Aufgrund der Förderungen ist die Nachfrage nach Pellets deutlich angestiegen. Daraus resultieren Nebenwirkungen wie ein Preisanstieg sowie eine vermehrte Verwendung von Waldholz, anstatt von Holzabfällen.[15]

Energiesicherheit und regionale Wertschöpfung

Durch den Einsatz des biogenen Energieträgers Holzpellets wird die Abhängigkeit von fossilen Energieträgern reduziert. Zudem kann im Unterschied zu fossilen Brennstoffen bei der Nutzung von Holzpellets teilweise auf regional erzeugte Brennstoffe zurückgegriffen werden. Die Ausgaben für den Brennstoff bleiben dann weitgehend in der eigenen Region und erhöhen dort die Wertschöpfung.

Emissionen

Schwefeldioxid (SO2)

Holzpellets nach DIN plus oder ÖNORM M 7135 haben einen Schwefelgehalt von maximal 0,04 Gew-%, der zwischen Erdgas nach Spezifikation des DVGW (max. 30 mg/m³ bzw. 8 mg/kWh zuzüglich Schwefelanteile aus durchschnittlicher Odorierung) und leichtem Heizöl (maximal 0,1 Gew-% nach § 10 der 10. BImSchV) liegt.[16] Laut Globalem Emissions-Modell Integrierter Systeme (GEMIS) beträgt die Freisetzung von SO2 über den gesamten Lebenszyklus von Holzpellets aus der Restholzverwertung etwa 0,53 g/kWh. Heizöl (Brennwerttechnik) und Erdgas bilanzieren mit 0,73 g/kWh bzw. 0,18 g/kWh.[14]

Ozonbelastung

Die Ozonbelastung durch Freisetzung von Ozon-Vorgängerstoffen (Stickoxide, Kohlenstoffmonoxid, Methan und flüchtige organische Verbindungen) wird für die Verbrennung von Holzpellets aus der Restholzverwertung in GEMIS mit 0,88 g/kWh ausgewiesen, etwa um den Faktor zwei mehr als bei der Verbrennung von Heizöl mit Brennwerttechnik (0,41 g/kWh) oder von Erdgas (0,35 g/kWh).[14] Da die vermehrte Bildung von Photooxidantien aufgrund der dazu notwendigen intensiven Sonnenstrahlung hauptsächlich in den Sommermonaten ein Problem darstellt („Sommersmog“), während Raumheizungen naturgemäß überwiegend im Winter arbeiten, wird dieser Emission aber vergleichsweise wenig Problempotential zugeschrieben.

Feinstäube

Die Feinstaubemission moderner Pelletkessel ist zwar deutlich besser als von Kaminen, Kachelöfen oder Stückholzkesseln, überschreitet den Ausstoß vergleichbarer Öl- und Gasbrennern prinzipbedingt jedoch um ein Vielfaches, insbesondere wenn man jahres- und tagestypische Heizveränderungen einbezieht.

Im Normbetrieb liegt die Feinstaubemission bei etwa 8 mg pro MJ Wärmemenge, entsprechend 29 mg/kWh. Inzwischen gibt es Pelletsheizanlagen, die durch optimierte Verbrennung die Feinstaubemissionswerte unterschreiten und auch in Bereichen installiert werden dürfen, wo strengere Regelungen gelten. Diese Anlagen arbeiten mit Brennwerttechnik und haben ein relativ staub- und rußarmes Abgas (ca. 4 mg Feinstaub pro MJ = 14,5 mg/kWh). Diesen niedrigen Feinstaubwert erreicht ansonsten auch der sog. Partitionsbrenner (Quereinschubbrenner mit besonderer Ausformung der Luftsteuerung), obwohl dieser ohne Brennwerttechnik auskommt. Der Vergleichswert für die Feinstaubemission liegt bei Einzelöfen (offener Kamin, Kachelofen) bei etwa 150 mg/MJ (= 544 mg/kWh), bei Stückholzkesseln bei etwa 90 mg/MJ (= 326 mg/kWh), und bei Ölheizungen bei 3 mg/MJ (= 11 mg/kWh).[17]

Die genannten Feinstaubemissionswerte beziehen sich auf Heizungen im Dauerbetrieb, eine Betriebsart, die bezüglich der Emissionen bei Pelletheizungen zu optimalen Werten führt. Unterschiedliches Verhalten bei Teillast oder im Intervallbetrieb wird dabei nicht berücksichtigt. Eine Studie von Struschka et al. von 2010 bezog diese dynamischen Betriebszustände ein.[18] Im wintertypischen Tagesprofil emittierte ein Pelletkessel dabei 114 mg/kWh Feinstaub, im Gegensatz zu gemessenen 74 mg/kWh im Dauerbetrieb. Die Vergleichswerte für den Ölbrenner betrugen im Versuch 0,10–1,40 mg/kWh (dabei kaum Unterschiede zwischen Dauer- und Intervallbetrieb). Die Studie entstand im Auftrag des Instituts für wirtschaftliche Ölheizung (IWO).

Kritik

Nach einer Studie der Österreichischen Gesellschaft für Umwelt und Technik, die Kapitalkosten und laufende Kosten von Heizungsanlagen unter verschiedenen Heizwärmeverbräuchen und Energiepreisszenarien vergleicht, „rechnen“ sich Pelletheizungen bei geringeren oder gleich bleibenden Energiepreisen im Vergleich zu fossilen Heizsystemen nur für deutlich überdurchschnittliche Wärmeverbraucher, je mehr Energie (vor allem bei Niedrigenergiehäusern) durch Wärmedämmung eingespart wird, desto mehr schlagen die hohen Anlagenerrichtungskosten im Gesamtpreis über die Lebensdauer durch und Pelletheizungen stellen dann „unter Annahme konstant niedriger Energiepreise u. U. sogar das teuerste Heizsystem dar“. Pelletheizkessel brächten aber neben Scheitholz­heizungen die niedrigsten Gesamtkosten, wenn die Heizkosten fossiler Brennstoffe noch weiter steigen.[19]

Die Europäische Umweltagentur warnt, dass vermehrte Verbrennung von Biomasse in privaten Heizanlagen die Luftqualität verschlechtern könnte, da Holzrauch Feinstaub und Ruß enthält und giftige Stoffe wie etwa Dioxine enthalten kann.[20][21] Etwa von 2000 bis 2005 wurden Feinstaubreduktionen mittels emissionsärmerer Formen der Holzverbrennung durch eine Zunahme der Holzverfeuerungsanlagen zunichtegemacht. Die Feinstaubemissionen aus Holzfeuerungsanlagen überstiegen nach einer Untersuchung des Umweltbundesamtes die Emissionen aus dem Straßenverkehr (nur Verbrennung) von 22.700 Tonnen.[22]

(Weitere Kritik findet sich im Artikel Holzpellet.)

Literatur

Einzelnachweise

  1. Brennstoff, insbesondere in Form von Pellets, aus Olivenresten und brennbaren organischen und/oder anorganischen Stoffen, Patentschrift
  2. olivenpellets.de
  3. Hersteller von Pellets aus Tropenholz, Kokosnussschalen und Ölpalmenkernen
  4. a b Karl Furtner, Herbert Haneder: Heizölkessel - Marktanteile schwinden. Österreich ist Europameister beim Heizen mit Pellets. In: Landwirtschaftskammer Niederösterreich (Hrsg.): ökoenergie. 122000. Auflage. Nr. 90. Wien Februar 2013, S. 2–3.
  5. FNR: Marktübersicht Pellet-Zentralheizungen und Pelletöfen. S. 7
  6. Erneuerbare Energien – Bundesamt für Wirtschaft und Ausfuhrkontrolle, www.bafa.de/
  7. Deutscher Energieholz- und Pelletverband DEPV: Energiepreisentwicklung in Deutschland. Abgerufen am 24. Januar 2010.
  8. Centrales Agrar-Rohstoff Marketing- und Energie-Netzwerk. Abgerufen am 15. Februar 2016.
  9. Der Pelletpreisindex PPI 06 (Memento des Originals vom 31. Dezember 2012 im Internet Archive)  Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/www.propellets.at und zugehörige pdf-Datei@1@2Vorlage:Toter Link/www.propellets.at (Seite nicht mehr abrufbar, festgestellt im April 2019. Suche in Webarchiven)  Info: Der Link wurde automatisch als defekt markiert. Bitte prüfe den Link gemäß Anleitung und entferne dann diesen Hinweis.
  10. Austian Energy Agency: Österreichischer Gaspreisindex ÖGPI und zugehörige pdf-Datei@1@2Vorlage:Toter Link/www.energyagency.at (Seite nicht mehr abrufbar, festgestellt im April 2019. Suche in Webarchiven)  Info: Der Link wurde automatisch als defekt markiert. Bitte prüfe den Link gemäß Anleitung und entferne dann diesen Hinweis.
  11. Vgl. Grafik Gaspreise in Deutschland in Cent/kWh ab 1991 (Memento des Originals vom 18. Januar 2014 im Internet Archive)  Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/www.fr-online.de (Flash; 369 kB)
  12. NABU, 2008: ENERGIEHOLZPRODUKTION IN DER LANDWIRTSCHAFT. Chancen und Risiken aus Sicht des Natur- und Umweltschutzes. (pdf; 1,3 MB)
  13. Mit Holz umweltgerecht heizen, Der BUND@1@2Vorlage:Toter Link/www.bund.net (Seite nicht mehr abrufbar, festgestellt im April 2019. Suche in Webarchiven)  Info: Der Link wurde automatisch als defekt markiert. Bitte prüfe den Link gemäß Anleitung und entferne dann diesen Hinweis.
  14. a b c Globales Emissions-Modell Integrierter Systeme, Ergebnisdaten aus GEMIS 4.2 (Memento des Originals vom 13. Februar 2007 im Internet Archive)  Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/www.oeko.de, November 2004
  15. Folgen des Pellet-Booms: "Der Waldboden blutet aus" Spiegel, November 2009
  16. nach: Erdgas – Der umweltschonende fossile Energieträger. Bundesverband der deutschen Gas- und Wasserwirtschaft (BGW). o. Datum. Bild 4, S. 17. (PDF 1,5 MB)
  17. Feinstaub, was tragen unsere Pelletheizung dazu? (Memento vom 28. September 2007 im Internet Archive) (B.energie AG, Schweiz)
  18. Michael Struschka, Maike Springmann, Julia Goy, Christian Schäfer: Feinstaubemissionen von Öl-, Gas- und Pelletkesseln, https://www.immissionsschutzdigital.de/IMS.01.2010.023
  19. Vollkostenvergleich von Heizsystemen für Einfamilienhäuser – Vergleich der Lebenszykluskosten von Heizöl-, Erdgas-, Pellet- und Scheitholzheizungen für alte Einfamilienhäuser in neun Szenarien, österreichische gesellschaft für umwelt und technik [sic], Wien Dezember 2011, (pdf-Datei, abgerufen am 6. Juni 2019), Seite 9.
  20. Air quality in Europe — 2017 report apren.pt (PDF); European Environment Society; EEA Report No 13/2017, ISSN 1977-8449.
  21. Timothy Spence: Doubts cast on biofuels’ air quality claims; bei euractiv.com
  22. Die Nebenwirkungen der Behaglichkeit: Feinstaub aus Kamin und Holzofen. Hintergrundpapier des Umweltbundesamtes, März 2006.

Siehe auch