default search action
Jorge Nocedal
Person information
- affiliation: Northwestern University, Illinois, USA
- award (2017): John von Neumann Theory Prize
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [i7]Yuchen Lou, Shigeng Sun, Jorge Nocedal:
Noise-Tolerant Optimization Methods for the Solution of a Robust Design Problem. CoRR abs/2401.15007 (2024) - 2023
- [j64]Shigeng Sun, Jorge Nocedal:
A trust region method for noisy unconstrained optimization. Math. Program. 202(1): 445-472 (2023) - [j63]Hao-Jun Michael Shi, Melody Qiming Xuan, Figen Öztoprak, Jorge Nocedal:
On the numerical performance of finite-difference-based methods for derivative-free optimization. Optim. Methods Softw. 38(2): 289-311 (2023) - [j62]Figen Öztoprak, Richard H. Byrd, Jorge Nocedal:
Constrained Optimization in the Presence of Noise. SIAM J. Optim. 33(3): 2118-2136 (2023) - 2022
- [j61]Hao-Jun Michael Shi, Yuchen Xie, Richard H. Byrd, Jorge Nocedal:
A Noise-Tolerant Quasi-Newton Algorithm for Unconstrained Optimization. SIAM J. Optim. 32(1): 29-55 (2022) - [j60]Hao-Jun Michael Shi, Yuchen Xie, Melody Qiming Xuan, Jorge Nocedal:
Adaptive Finite-Difference Interval Estimation for Noisy Derivative-Free Optimization. SIAM J. Sci. Comput. 44(4): 2302- (2022) - 2020
- [j59]Albert S. Berahas, Raghu Bollapragada, Jorge Nocedal:
An investigation of Newton-Sketch and subsampled Newton methods. Optim. Methods Softw. 35(4): 661-680 (2020) - [j58]Yuchen Xie, Richard H. Byrd, Jorge Nocedal:
Analysis of the BFGS Method with Errors. SIAM J. Optim. 30(1): 182-209 (2020)
2010 – 2019
- 2019
- [j57]Albert S. Berahas, Richard H. Byrd, Jorge Nocedal:
Derivative-Free Optimization of Noisy Functions via Quasi-Newton Methods. SIAM J. Optim. 29(2): 965-993 (2019) - 2018
- [j56]Raghu Bollapragada, Richard H. Byrd, Jorge Nocedal:
Adaptive Sampling Strategies for Stochastic Optimization. SIAM J. Optim. 28(4): 3312-3343 (2018) - [j55]Léon Bottou, Frank E. Curtis, Jorge Nocedal:
Optimization Methods for Large-Scale Machine Learning. SIAM Rev. 60(2): 223-311 (2018) - [c8]Raghu Bollapragada, Dheevatsa Mudigere, Jorge Nocedal, Hao-Jun Michael Shi, Ping Tak Peter Tang:
A Progressive Batching L-BFGS Method for Machine Learning. ICML 2018: 619-628 - [i6]Raghu Bollapragada, Dheevatsa Mudigere, Jorge Nocedal, Hao-Jun Michael Shi, Ping Tak Peter Tang:
A Progressive Batching L-BFGS Method for Machine Learning. CoRR abs/1802.05374 (2018) - 2017
- [c7]Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, Ping Tak Peter Tang:
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima. ICLR 2017 - [i5]Albert S. Berahas, Raghu Bollapragada, Jorge Nocedal:
An Investigation of Newton-Sketch and Subsampled Newton Methods. CoRR abs/1705.06211 (2017) - 2016
- [j54]Richard H. Byrd, Jorge Nocedal, Figen Öztoprak:
An inexact successive quadratic approximation method for L-1 regularized optimization. Math. Program. 157(2): 375-396 (2016) - [j53]Richard H. Byrd, Gillian M. Chin, Jorge Nocedal, Figen Öztoprak:
A family of second-order methods for convex ℓ1-regularized optimization. Math. Program. 159(1-2): 435-467 (2016) - [j52]Nitish Shirish Keskar, Jorge Nocedal, Figen Öztoprak, Andreas Wächter:
A second-order method for convex l1-regularized optimization with active-set prediction. Optim. Methods Softw. 31(3): 605-621 (2016) - [j51]Richard H. Byrd, S. L. Hansen, Jorge Nocedal, Yoram Singer:
A Stochastic Quasi-Newton Method for Large-Scale Optimization. SIAM J. Optim. 26(2): 1008-1031 (2016) - [c6]Albert S. Berahas, Jorge Nocedal, Martin Takác:
A Multi-Batch L-BFGS Method for Machine Learning. NIPS 2016: 1055-1063 - [i4]Albert S. Berahas, Jorge Nocedal, Martin Takác:
A Multi-Batch L-BFGS Method for Machine Learning. CoRR abs/1605.06049 (2016) - [i3]Léon Bottou, Frank E. Curtis, Jorge Nocedal:
Optimization Methods for Large-Scale Machine Learning. CoRR abs/1606.04838 (2016) - [i2]Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, Ping Tak Peter Tang:
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima. CoRR abs/1609.04836 (2016) - 2015
- [j50]Stefan Solntsev, Jorge Nocedal, Richard H. Byrd:
An algorithm for quadratic ℓ1-regularized optimization with a flexible active-set strategy. Optim. Methods Softw. 30(6): 1213-1237 (2015) - 2014
- [j49]Jorge Nocedal, Figen Öztoprak, Richard A. Waltz:
An interior point method for nonlinear programming with infeasibility detection capabilities. Optim. Methods Softw. 29(4): 837-854 (2014) - [i1]Richard H. Byrd, S. L. Hansen, Jorge Nocedal, Yoram Singer:
A Stochastic Quasi-Newton Method for Large-Scale Optimization. CoRR abs/1401.7020 (2014) - 2013
- [j48]Richard H. Byrd, Jorge Nocedal, Richard A. Waltz, Yuchen Wu:
On the use of piecewise linear models in nonlinear programming. Math. Program. 137(1-2): 289-324 (2013) - [j47]Daniel P. Robinson, Liming Feng, Jorge Nocedal, Jong-Shi Pang:
Subspace Accelerated Matrix Splitting Algorithms for Asymmetric and Symmetric Linear Complementarity Problems. SIAM J. Optim. 23(3): 1371-1397 (2013) - [j46]Gillian M. Chin, Jorge Nocedal, Peder A. Olsen, Steven J. Rennie:
Second Order Methods for Optimizing Convex Matrix Functions and Sparse Covariance Clustering. IEEE Trans. Speech Audio Process. 21(11): 2244-2254 (2013) - 2012
- [j45]Richard H. Byrd, Gabriel López-Calva, Jorge Nocedal:
A line search exact penalty method using steering rules. Math. Program. 133(1-2): 39-73 (2012) - [j44]Richard H. Byrd, Gillian M. Chin, Jorge Nocedal, Yuchen Wu:
Sample size selection in optimization methods for machine learning. Math. Program. 134(1): 127-155 (2012) - [c5]Samantha Hansen, Jorge Nocedal:
Second-order methods for L1 regularized problems in machine learning. ICASSP 2012: 5237-5240 - [c4]Peder A. Olsen, Figen Öztoprak, Jorge Nocedal, Steven J. Rennie:
Newton-Like Methods for Sparse Inverse Covariance Estimation. NIPS 2012: 764-772 - 2011
- [j43]Liming Feng, Vadim Linetsky, José Luis Morales, Jorge Nocedal:
On the solution of complementarity problems arising in American options pricing. Optim. Methods Softw. 26(4-5): 813-825 (2011) - [j42]Richard H. Byrd, Gillian M. Chin, Will Neveitt, Jorge Nocedal:
On the Use of Stochastic Hessian Information in Optimization Methods for Machine Learning. SIAM J. Optim. 21(3): 977-995 (2011) - [j41]José Luis Morales, Jorge Nocedal:
Remark on "algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound constrained optimization". ACM Trans. Math. Softw. 38(1): 7:1-7:4 (2011) - 2010
- [j40]Richard H. Byrd, Frank E. Curtis, Jorge Nocedal:
An inexact Newton method for nonconvex equality constrained optimization. Math. Program. 122(2): 273-299 (2010) - [j39]Richard H. Byrd, Frank E. Curtis, Jorge Nocedal:
Infeasibility Detection and SQP Methods for Nonlinear Optimization. SIAM J. Optim. 20(5): 2281-2299 (2010)
2000 – 2009
- 2009
- [j38]Giovanni Fasano, José Luis Morales, Jorge Nocedal:
On the geometry phase in model-based algorithms for derivative-free optimization. Optim. Methods Softw. 24(1): 145-154 (2009) - [j37]Jorge Nocedal, Andreas Wächter, Richard A. Waltz:
Adaptive Barrier Update Strategies for Nonlinear Interior Methods. SIAM J. Optim. 19(4): 1674-1693 (2009) - [j36]Frank E. Curtis, Jorge Nocedal, Andreas Wächter:
A Matrix-Free Algorithm for Equality Constrained Optimization Problems with Rank-Deficient Jacobians. SIAM J. Optim. 20(3): 1224-1249 (2009) - [c3]Jorge Nocedal:
Fast and parallel algorithms for pricing American options: keynote. SC-WHPCF 2009 - 2008
- [j35]José Luis Morales, Jorge Nocedal, Mikhail Smelyanskiy:
An algorithm for the fast solution of symmetric linear complementarity problems. Numerische Mathematik 111(2): 251-266 (2008) - [j34]Richard H. Byrd, Jorge Nocedal, Richard A. Waltz:
Steering exact penalty methods for nonlinear programming. Optim. Methods Softw. 23(2): 197-213 (2008) - [j33]Richard H. Byrd, Frank E. Curtis, Jorge Nocedal:
An Inexact SQP Method for Equality Constrained Optimization. SIAM J. Optim. 19(1): 351-369 (2008) - 2007
- [j32]Frank E. Curtis, Jorge Nocedal:
Steplength selection in interior-point methods for quadratic programming. Appl. Math. Lett. 20(5): 516-523 (2007) - 2006
- [j31]Richard A. Waltz, José Luis Morales, Jorge Nocedal, Dominique Orban:
An interior algorithm for nonlinear optimization that combines line search and trust region steps. Math. Program. 107(3): 391-408 (2006) - [j30]Sven Leyffer, Gabriel López-Calva, Jorge Nocedal:
Interior Methods for Mathematical Programs with Complementarity Constraints. SIAM J. Optim. 17(1): 52-77 (2006) - [c2]Long Hei, Jorge Nocedal, Richard A. Waltz:
A Numerical Study of Active-Set and Interior-Point Methods for Bound Constrained Optimization. HPSC 2006: 273-292 - 2005
- [j29]Richard H. Byrd, Nicholas I. M. Gould, Jorge Nocedal, Richard A. Waltz:
On the Convergence of Successive Linear-Quadratic Programming Algorithms. SIAM J. Optim. 16(2): 471-489 (2005) - 2004
- [j28]E. Michael Gertz, Jorge Nocedal, Annick Sartenaer:
A starting point strategy for nonlinear interior methods. Appl. Math. Lett. 17(8): 945-952 (2004) - [j27]Richard H. Byrd, Marcelo Marazzi, Jorge Nocedal:
On the convergence of Newton iterations to non-stationary points. Math. Program. 99(1): 127-148 (2004) - [j26]Richard H. Byrd, Nicholas I. M. Gould, Jorge Nocedal, Richard A. Waltz:
An algorithm for nonlinear optimization using linear programming and equality constrained subproblems. Math. Program. 100(1): 27-48 (2004) - 2003
- [j25]Richard H. Byrd, Jorge Nocedal, Richard A. Waltz:
Feasible Interior Methods Using Slacks for Nonlinear Optimization. Comput. Optim. Appl. 26(1): 35-61 (2003) - [c1]Jorge Nocedal:
Solving Optimization Problems Using Parallel and Grid Computing. ENC 2003: 6 - 2002
- [j24]José Luis Morales, Jorge Nocedal:
Enriched Methods for Large-Scale Unconstrained Optimization. Comput. Optim. Appl. 21(2): 143-154 (2002) - [j23]Jorge Nocedal, Annick Sartenaer, Ciyou Zhu:
On the Behavior of the Gradient Norm in the Steepest Descent Method. Comput. Optim. Appl. 22(1): 5-35 (2002) - [j22]Marcelo Marazzi, Jorge Nocedal:
Wedge trust region methods for derivative free optimization. Math. Program. 91(2): 289-305 (2002) - 2001
- [j21]Nicholas I. M. Gould, Mary E. Hribar, Jorge Nocedal:
On the Solution of Equality Constrained Quadratic Programming Problems Arising in Optimization. SIAM J. Sci. Comput. 23(4): 1376-1395 (2001) - [j20]José Luis Morales, Jorge Nocedal:
Algorithm 809: PREQN: Fortran 77 subroutines for preconditioning the conjugate gradient method. ACM Trans. Math. Softw. 27(1): 83-91 (2001) - 2000
- [j19]Lorenz T. Biegler, Jorge Nocedal, Claudia Schmid, David Ternet:
Numerical Experience with a Reduced Hessian Method for Large Scale Constrained Optimization. Comput. Optim. Appl. 15(1): 45-67 (2000) - [j18]Richard H. Byrd, Jean Charles Gilbert, Jorge Nocedal:
A trust region method based on interior point techniques for nonlinear programming. Math. Program. 89(1): 149-185 (2000) - [j17]José Luis Morales, Jorge Nocedal:
Automatic Preconditioning by Limited Memory Quasi-Newton Updating. SIAM J. Optim. 10(4): 1079-1096 (2000)
1990 – 1999
- 1999
- [b1]Jorge Nocedal, Stephen J. Wright:
Numerical Optimization. Springer 1999, ISBN 978-0-387-98793-4, pp. 1-634 - [j16]Richard H. Byrd, Mary E. Hribar, Jorge Nocedal:
An Interior Point Algorithm for Large-Scale Nonlinear Programming. SIAM J. Optim. 9(4): 877-900 (1999) - 1998
- [j15]Marucha Lalee, Jorge Nocedal, Todd D. Plantenga:
On the Implementation of an Algorithm for Large-Scale Equality Constrained Optimization. SIAM J. Optim. 8(3): 682-706 (1998) - 1997
- [j14]Ciyou Zhu, Richard H. Byrd, Peihuang Lu, Jorge Nocedal:
Algorithm 778: L-BFGS-B: Fortran Subroutines for Large-Scale Bound-Constrained Optimization. ACM Trans. Math. Softw. 23(4): 550-560 (1997) - 1995
- [j13]Lorenz T. Biegler, Jorge Nocedal, Claudia Schmid:
A Reduced Hessian Method for Large-Scale Constrained Optimization. SIAM J. Optim. 5(2): 314-347 (1995) - [j12]Richard H. Byrd, Peihuang Lu, Jorge Nocedal, Ciyou Zhu:
A Limited Memory Algorithm for Bound Constrained Optimization. SIAM J. Sci. Comput. 16(5): 1190-1208 (1995) - 1994
- [j11]Richard H. Byrd, Jorge Nocedal, Robert B. Schnabel:
Representations of quasi-Newton matrices and their use in limited memory methods. Math. Program. 63: 129-156 (1994) - 1993
- [j10]Jorge Nocedal, Ya-Xiang Yuan:
Analysis of a self-scaling quasi-Newton method. Math. Program. 61: 19-37 (1993) - [j9]Marucha Lalee, Jorge Nocedal:
Automatic Column Scaling Strategies for Quasi-Newton Methods. SIAM J. Optim. 3(3): 637-653 (1993) - 1992
- [j8]Jean Charles Gilbert, Jorge Nocedal:
Global Convergence Properties of Conjugate Gradient Methods for Optimization. SIAM J. Optim. 2(1): 21-42 (1992) - [j7]Richard H. Byrd, Dong C. Liu, Jorge Nocedal:
On the Behavior of Broyden's Class of Quasi-Newton Methods. SIAM J. Optim. 2(4): 533-557 (1992) - 1991
- [j6]Richard H. Byrd, Jorge Nocedal:
An analysis of reduced Hessian methods for constrained optimization. Math. Program. 49: 285-323 (1991) - [j5]Stephen G. Nash, Jorge Nocedal:
A Numerical Study of the Limited Memory BFGS Method and the Truncated-Newton Method for Large Scale Optimization. SIAM J. Optim. 1(3): 358-372 (1991)
1980 – 1989
- 1989
- [j4]Dong C. Liu, Jorge Nocedal:
On the limited memory BFGS method for large scale optimization. Math. Program. 45(1-3): 503-528 (1989) - 1985
- [j3]William C. Davidon, Jorge Nocedal:
Evaluation of Step Directions in Optimization Algorithms. ACM Trans. Math. Softw. 11(1): 12-19 (1985) - 1982
- [j2]Larry Nazareth, Jorge Nocedal:
Conjugate direction methods with variable storage. Math. Program. 23(1): 326-340 (1982)
1970 – 1979
- 1979
- [j1]Petter Bjørstad, Jorge Nocedal:
Analysis of a new algorithm for one-dimensional minimization. Computing 22(1): 93-100 (1979)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-05-02 21:46 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint