default search action
Takafumi Kanamori
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j59]Takumi Nakagawa, Yutaro Sanada, Hiroki Waida, Yuhui Zhang, Yuichiro Wada, Kosaku Takanashi, Tomonori Yamada, Takafumi Kanamori:
Denoising cosine similarity: A theory-driven approach for efficient representation learning. Neural Networks 169: 226-241 (2024) - [c23]Hiroo Irobe, Wataru Aoki, Kimihiro Yamazaki, Yuhui Zhang, Takumi Nakagawa, Hiroki Waida, Yuichiro Wada, Takafumi Kanamori:
Robust VAEs via Generating Process of Noise Augmented Data. ISIT 2024: 587-592 - [i17]Hiroo Irobe, Wataru Aoki, Kimihiro Yamazaki, Yuhui Zhang, Takumi Nakagawa, Hiroki Waida, Yuichiro Wada, Takafumi Kanamori:
Robust VAEs via Generating Process of Noise Augmented Data. CoRR abs/2407.18632 (2024) - [i16]Takafumi Kanamori, Kodai Yokoyama, Takayuki Kawashima:
Robust Estimation for Kernel Exponential Families with Smoothed Total Variation Distances. CoRR abs/2410.20760 (2024) - [i15]Yoshitaka Koike, Takumi Nakagawa, Hiroki Waida, Takafumi Kanamori:
Scaling-based Data Augmentation for Generative Models and its Theoretical Extension. CoRR abs/2410.20780 (2024) - 2023
- [j58]Yuhui Zhang, Yuichiro Wada, Hiroki Waida, Kaito Goto, Yusaku Hino, Takafumi Kanamori:
Deep Clustering With a Constraint for Topological Invariance Based on Symmetric InfoNCE. Neural Comput. 35(7): 1288-1339 (2023) - [j57]Léo Andéol, Yusei Kawakami, Yuichiro Wada, Takafumi Kanamori, Klaus-Robert Müller, Grégoire Montavon:
Learning domain invariant representations by joint Wasserstein distance minimization. Neural Networks 167: 233-243 (2023) - [c22]Hiroki Waida, Yuichiro Wada, Léo Andéol, Takumi Nakagawa, Yuhui Zhang, Takafumi Kanamori:
Towards Understanding the Mechanism of Contrastive Learning via Similarity Structure: A Theoretical Analysis. ECML/PKDD (4) 2023: 709-727 - [i14]Yuhui Zhang, Yuichiro Wada, Hiroki Waida, Kaito Goto, Yusaku Hino, Takafumi Kanamori:
Deep Clustering with a Constraint for Topological Invariance based on Symmetric InfoNCE. CoRR abs/2303.03036 (2023) - [i13]Hiroki Waida, Yuichiro Wada, Léo Andéol, Takumi Nakagawa, Yuhui Zhang, Takafumi Kanamori:
Towards Understanding the Mechanism of Contrastive Learning via Similarity Structure: A Theoretical Analysis. CoRR abs/2304.00395 (2023) - [i12]Takumi Nakagawa, Yutaro Sanada, Hiroki Waida, Yuhui Zhang, Yuichiro Wada, Kosaku Takanashi, Tomonori Yamada, Takafumi Kanamori:
Denoising Cosine Similarity: A Theory-Driven Approach for Efficient Representation Learning. CoRR abs/2304.09552 (2023) - [i11]Kei Ishikawa, Niao He, Takafumi Kanamori:
A Convex Framework for Confounding Robust Inference. CoRR abs/2309.12450 (2023) - 2022
- [j56]Song Liu, Takafumi Kanamori, Daniel J. Williams:
Estimating Density Models with Truncation Boundaries using Score Matching. J. Mach. Learn. Res. 23: 186:1-186:38 (2022) - [c21]Hiroaki Sasaki, Jun-Ichiro Hirayama, Takafumi Kanamori:
Mode estimation on matrix manifolds: Convergence and robustness. AISTATS 2022: 8056-8079 - [c20]Yutaro Sanada, Takumi Nakagawa, Yuichiro Wada, Kosaku Takanashi, Yuhui Zhang, Kiichi Tokuyama, Takafumi Kanamori, Tomonori Yamada:
Deep Self-Supervised Learning of Speech Denoising from Noisy Speeches. INTERSPEECH 2022: 1178-1182 - 2021
- [j55]Yuki Mae, Wataru Kumagai, Takafumi Kanamori:
Uncertainty propagation for dropout-based Bayesian neural networks. Neural Networks 144: 394-406 (2021) - [i10]Léo Andéol, Yusei Kawakami, Yuichiro Wada, Takafumi Kanamori, Klaus-Robert Müller, Grégoire Montavon:
Learning Domain Invariant Representations by Joint Wasserstein Distance Minimization. CoRR abs/2106.04923 (2021) - 2020
- [c19]Masatoshi Uehara, Takafumi Kanamori, Takashi Takenouchi, Takeru Matsuda:
A Unified Statistically Efficient Estimation Framework for Unnormalized Models. AISTATS 2020: 809-819 - [c18]Hiroaki Sasaki, Tomoya Sakai, Takafumi Kanamori:
Robust modal regression with direct gradient approximation of modal regression risk. UAI 2020: 380-389
2010 – 2019
- 2019
- [j54]Takafumi Kanamori, Naoya Osugi:
Model Description of Similarity-Based Recommendation Systems. Entropy 21(7): 702 (2019) - [j53]Yuichiro Wada, Shugo Miyamoto, Takumi Nakagama, Léo Andéol, Wataru Kumagai, Takafumi Kanamori:
Spectral Embedded Deep Clustering. Entropy 21(8): 795 (2019) - [j52]Yuichiro Wada, Siqiang Su, Wataru Kumagai, Takafumi Kanamori:
Robust Label Prediction via Label Propagation and Geodesic k-Nearest Neighbor in Online Semi-Supervised Learning. IEICE Trans. Inf. Syst. 102-D(8): 1537-1545 (2019) - [j51]Wataru Kumagai, Takafumi Kanamori:
Risk bound of transfer learning using parametric feature mapping and its application to sparse coding. Mach. Learn. 108(11): 1975-2008 (2019) - [j50]Kota Matsui, Wataru Kumagai, Kenta Kanamori, Mitsuaki Nishikimi, Takafumi Kanamori:
Variable Selection for Nonparametric Learning with Power Series Kernels. Neural Comput. 31(8): 1718-1750 (2019) - [c17]Song Liu, Takafumi Kanamori, Wittawat Jitkrittum, Yu Chen:
Fisher Efficient Inference of Intractable Models. NeurIPS 2019: 8790-8800 - [i9]Masatoshi Uehara, Takafumi Kanamori, Takashi Takenouchi, Takeru Matsuda:
Unified estimation framework for unnormalized models with statistical efficiency. CoRR abs/1901.07710 (2019) - [i8]Song Liu, Takafumi Kanamori:
Estimating Density Models with Complex Truncation Boundaries. CoRR abs/1910.03834 (2019) - [i7]Hiroaki Sasaki, Tomoya Sakai, Takafumi Kanamori:
Robust modal regression with direct log-density derivative estimation. CoRR abs/1910.08280 (2019) - 2018
- [i6]Kota Matsui, Wataru Kumagai, Kenta Kanamori, Mitsuaki Nishikimi, Takafumi Kanamori:
Variable Selection for Nonparametric Learning with Power Series Kernels. CoRR abs/1806.00569 (2018) - 2017
- [j49]Takafumi Kanamori, Shuhei Fujiwara, Akiko Takeda:
Breakdown Point of Robust Support Vector Machines. Entropy 19(2): 83 (2017) - [j48]Kota Matsui, Wataru Kumagai, Takafumi Kanamori:
Parallel distributed block coordinate descent methods based on pairwise comparison oracle. J. Glob. Optim. 69(1): 1-21 (2017) - [j47]Takashi Takenouchi, Takafumi Kanamori:
Statistical Inference with Unnormalized Discrete Models and Localized Homogeneous Divergences. J. Mach. Learn. Res. 18: 56:1-56:26 (2017) - [j46]Hiroaki Sasaki, Takafumi Kanamori, Aapo Hyvärinen, Gang Niu, Masashi Sugiyama:
Mode-Seeking Clustering and Density Ridge Estimation via Direct Estimation of Density-Derivative-Ratios. J. Mach. Learn. Res. 18: 180:1-180:47 (2017) - [j45]Shuhei Fujiwara, Akiko Takeda, Takafumi Kanamori:
DC Algorithm for Extended Robust Support Vector Machine. Neural Comput. 29(5): 1406-1438 (2017) - [j44]Takafumi Kanamori, Shuhei Fujiwara, Akiko Takeda:
Robustness of learning algorithms using hinge loss with outlier indicators. Neural Networks 94: 173-191 (2017) - [j43]Takafumi Kanamori, Takashi Takenouchi:
Graph-based composite local Bregman divergences on discrete sample spaces. Neural Networks 95: 44-56 (2017) - [c16]Hiroaki Sasaki, Takafumi Kanamori, Masashi Sugiyama:
Estimating Density Ridges by Direct Estimation of Density-Derivative-Ratios. AISTATS 2017: 204-212 - 2016
- [j42]Takafumi Kanamori:
Efficiency Bound of Local Z-Estimators on Discrete Sample Spaces. Entropy 18(7): 273 (2016) - 2015
- [c15]Takashi Takenouchi, Takafumi Kanamori:
Empirical Localization of Homogeneous Divergences on Discrete Sample Spaces. NIPS 2015: 820-828 - 2014
- [j41]Takafumi Kanamori, Akiko Takeda:
Numerical study of learning algorithms on Stiefel manifold. Comput. Manag. Sci. 11(4): 319-340 (2014) - [j40]Takafumi Kanamori, Masashi Sugiyama:
Statistical Analysis of Distance Estimators with Density Differences and Density Ratios. Entropy 16(2): 921-942 (2014) - [j39]Takafumi Kanamori:
Scale-Invariant Divergences for Density Functions. Entropy 16(5): 2611-2628 (2014) - [j38]Tuan Duong Nguyen, Marthinus Christoffel du Plessis, Takafumi Kanamori, Masashi Sugiyama:
Constrained Least-Squares Density-Difference Estimation. IEICE Trans. Inf. Syst. 97-D(7): 1822-1829 (2014) - [j37]Akiko Takeda, Shuhei Fujiwara, Takafumi Kanamori:
Extended Robust Support Vector Machine Based on Financial Risk Minimization. Neural Comput. 26(11): 2541-2569 (2014) - [j36]Akiko Takeda, Takafumi Kanamori:
Using financial risk measures for analyzing generalization performance of machine learning models. Neural Networks 57: 29-38 (2014) - [i5]Takafumi Kanamori, Shuhei Fujiwara, Akiko Takeda:
Breakdown Point of Robust Support Vector Machine. CoRR abs/1409.0934 (2014) - [i4]Kota Matsui, Wataru Kumagai, Takafumi Kanamori:
Parallel Distributed Block Coordinate Descent Methods based on Pairwise Comparison Oracle. CoRR abs/1409.3912 (2014) - 2013
- [j35]Takafumi Kanamori:
Statistical models and learning algorithms for ordinal regression problems. Inf. Fusion 14(2): 199-207 (2013) - [j34]Takafumi Kanamori, Takashi Takenouchi:
Improving Logitboost with prior knowledge. Inf. Fusion 14(2): 208-219 (2013) - [j33]Takafumi Kanamori, Atsumi Ohara:
A Bregman extension of quasi-Newton updates II: Analysis of robustness properties. J. Comput. Appl. Math. 253: 104-122 (2013) - [j32]Masashi Sugiyama, Song Liu, Marthinus Christoffel du Plessis, Masao Yamanaka, Makoto Yamada, Taiji Suzuki, Takafumi Kanamori:
Direct Divergence Approximation between Probability Distributions and Its Applications in Machine Learning. J. Comput. Sci. Eng. 7(2): 99-111 (2013) - [j31]Takafumi Kanamori, Akiko Takeda, Taiji Suzuki:
Conjugate relation between loss functions and uncertainty sets in classification problems. J. Mach. Learn. Res. 14(1): 1461-1504 (2013) - [j30]Takafumi Kanamori, Taiji Suzuki, Masashi Sugiyama:
Computational complexity of kernel-based density-ratio estimation: a condition number analysis. Mach. Learn. 90(3): 431-460 (2013) - [j29]Masanori Kawakita, Takafumi Kanamori:
Semi-supervised learning with density-ratio estimation. Mach. Learn. 91(2): 189-209 (2013) - [j28]Akiko Takeda, Hiroyuki Mitsugi, Takafumi Kanamori:
A Unified Classification Model Based on Robust Optimization. Neural Comput. 25(3): 759-804 (2013) - [j27]Makoto Yamada, Taiji Suzuki, Takafumi Kanamori, Hirotaka Hachiya, Masashi Sugiyama:
Relative Density-Ratio Estimation for Robust Distribution Comparison. Neural Comput. 25(5): 1324-1370 (2013) - [j26]Masashi Sugiyama, Takafumi Kanamori, Taiji Suzuki, Marthinus Christoffel du Plessis, Song Liu, Ichiro Takeuchi:
Density-Difference Estimation. Neural Comput. 25(10): 2734-2775 (2013) - [j25]Takafumi Kanamori, Atsumi Ohara:
A Bregman extension of quasi-Newton updates I: an information geometrical framework. Optim. Methods Softw. 28(1): 96-123 (2013) - 2012
- [b1]Masashi Sugiyama, Taiji Suzuki, Takafumi Kanamori:
Density Ratio Estimation in Machine Learning. Cambridge University Press 2012, ISBN 978-0-521-19017-6, pp. I-XII, 1-329 - [j24]Takafumi Kanamori, Akiko Takeda:
Worst-Case Violation of Sampled Convex Programs for Optimization with Uncertainty. J. Optim. Theory Appl. 152(1): 171-197 (2012) - [j23]Takafumi Kanamori, Taiji Suzuki, Masashi Sugiyama:
Statistical analysis of kernel-based least-squares density-ratio estimation. Mach. Learn. 86(3): 335-367 (2012) - [j22]Takafumi Kanamori, Taiji Suzuki, Masashi Sugiyama:
f-Divergence Estimation and Two-Sample Homogeneity Test Under Semiparametric Density-Ratio Models. IEEE Trans. Inf. Theory 58(2): 708-720 (2012) - [c14]Akiko Takeda, Hiroyuki Mitsugi, Takafumi Kanamori:
A Unified Robust Classification Model. ICML 2012 - [c13]Takafumi Kanamori, Akiko Takeda:
Non-convex Optimization on Stiefel Manifold and Applications to Machine Learning. ICONIP (1) 2012: 109-116 - [c12]Masashi Sugiyama, Takafumi Kanamori, Taiji Suzuki, Marthinus Christoffel du Plessis, Song Liu, Ichiro Takeuchi:
Density-Difference Estimation. NIPS 2012: 692-700 - [c11]Takafumi Kanamori, Akiko Takeda, Taiji Suzuki:
A Conjugate Property between Loss Functions and Uncertainty Sets in Classification Problems. COLT 2012: 29.1-29.23 - [i3]Takafumi Kanamori, Akiko Takeda, Taiji Suzuki:
A Conjugate Property between Loss Functions and Uncertainty Sets in Classification Problems. CoRR abs/1204.6583 (2012) - [i2]Akiko Takeda, Hiroyuki Mitsugi, Takafumi Kanamori:
A Unified Robust Classification Model. CoRR abs/1206.4599 (2012) - [i1]Masashi Sugiyama, Takafumi Kanamori, Taiji Suzuki, Marthinus Christoffel du Plessis, Song Liu, Ichiro Takeuchi:
Density-Difference Estimation. CoRR abs/1207.0099 (2012) - 2011
- [j21]Hidetoshi Shimodaira, Takafumi Kanamori, Masayoshi Aoki, Kouta Mine:
Multiscale Bagging and Its Applications. IEICE Trans. Inf. Syst. 94-D(10): 1924-1932 (2011) - [j20]Shohei Hido, Yuta Tsuboi, Hisashi Kashima, Masashi Sugiyama, Takafumi Kanamori:
Statistical outlier detection using direct density ratio estimation. Knowl. Inf. Syst. 26(2): 309-336 (2011) - [j19]Masashi Sugiyama, Makoto Yamada, Paul von Bünau, Taiji Suzuki, Takafumi Kanamori, Motoaki Kawanabe:
Direct density-ratio estimation with dimensionality reduction via least-squares hetero-distributional subspace search. Neural Networks 24(2): 183-198 (2011) - [j18]Masashi Sugiyama, Taiji Suzuki, Yuta Itoh, Takafumi Kanamori, Manabu Kimura:
Least-squares two-sample test. Neural Networks 24(7): 735-751 (2011) - [c10]Makoto Yamada, Taiji Suzuki, Takafumi Kanamori, Hirotaka Hachiya, Masashi Sugiyama:
Relative Density-Ratio Estimation for Robust Distribution Comparison. NIPS 2011: 594-602 - 2010
- [j17]Masashi Sugiyama, Ichiro Takeuchi, Taiji Suzuki, Takafumi Kanamori, Hirotaka Hachiya, Daisuke Okanohara:
Least-Squares Conditional Density Estimation. IEICE Trans. Inf. Syst. 93-D(3): 583-594 (2010) - [j16]Takafumi Kanamori, Taiji Suzuki, Masashi Sugiyama:
Theoretical Analysis of Density Ratio Estimation. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 93-A(4): 787-798 (2010) - [j15]Takafumi Kanamori:
Deformation of log-likelihood loss function for multiclass boosting. Neural Networks 23(7): 843-864 (2010) - [c9]Masashi Sugiyama, Satoshi Hara, Paul von Bünau, Taiji Suzuki, Takafumi Kanamori, Motoaki Kawanabe:
Direct Density Ratio Estimation with Dimensionality Reduction. SDM 2010: 595-606 - [c8]Masashi Sugiyama, Ichiro Takeuchi, Taiji Suzuki, Takafumi Kanamori, Hirotaka Hachiya, Daisuke Okanohara:
Conditional Density Estimation via Least-Squares Density Ratio Estimation. AISTATS 2010: 781-788
2000 – 2009
- 2009
- [j14]Taiji Suzuki, Masashi Sugiyama, Takafumi Kanamori, Jun Sese:
Mutual information estimation reveals global associations between stimuli and biological processes. BMC Bioinform. 10(S-1) (2009) - [j13]Akiko Takeda, Takafumi Kanamori:
A robust approach based on conditional value-at-risk measure to statistical learning problems. Eur. J. Oper. Res. 198(1): 287-296 (2009) - [j12]Masashi Sugiyama, Takafumi Kanamori, Taiji Suzuki, Shohei Hido, Jun Sese, Ichiro Takeuchi, Liwei Wang:
A Density-ratio Framework for Statistical Data Processing. Inf. Media Technol. 4(4): 962-987 (2009) - [j11]Masashi Sugiyama, Takafumi Kanamori, Taiji Suzuki, Shohei Hido, Jun Sese, Ichiro Takeuchi, Liwei Wang:
A Density-ratio Framework for Statistical Data Processing. IPSJ Trans. Comput. Vis. Appl. 1: 183-208 (2009) - [j10]Takafumi Kanamori, Shohei Hido, Masashi Sugiyama:
A Least-squares Approach to Direct Importance Estimation. J. Mach. Learn. Res. 10: 1391-1445 (2009) - [j9]Ichiro Takeuchi, Kaname Nomura, Takafumi Kanamori:
Nonparametric Conditional Density Estimation Using Piecewise-Linear Solution Path of Kernel Quantile Regression. Neural Comput. 21(2): 533-559 (2009) - 2008
- [j8]Takashi Takenouchi, Shinto Eguchi, Noboru Murata, Takafumi Kanamori:
Robust Boosting Algorithm Against Mislabeling in Multiclass Problems. Neural Comput. 20(6): 1596-1630 (2008) - [c7]Shohei Hido, Yuta Tsuboi, Hisashi Kashima, Masashi Sugiyama, Takafumi Kanamori:
Inlier-Based Outlier Detection via Direct Density Ratio Estimation. ICDM 2008: 223-232 - [c6]Takafumi Kanamori, Shohei Hido, Masashi Sugiyama:
Efficient Direct Density Ratio Estimation for Non-stationarity Adaptation and Outlier Detection. NIPS 2008: 809-816 - [c5]Taiji Suzuki, Masashi Sugiyama, Jun Sese, Takafumi Kanamori:
Approximating Mutual Information by Maximum Likelihood Density Ratio Estimation. FSDM 2008: 5-20 - 2007
- [j7]Takafumi Kanamori:
Multiclass Boosting Algorithms for Shrinkage Estimators of Class Probability. IEICE Trans. Inf. Syst. 90-D(12): 2033-2042 (2007) - [j6]Takafumi Kanamori:
Pool-based active learning with optimal sampling distribution and its information geometrical interpretation. Neurocomputing 71(1-3): 353-362 (2007) - [j5]Takafumi Kanamori, Takashi Takenouchi, Shinto Eguchi, Noboru Murata:
Robust Loss Functions for Boosting. Neural Comput. 19(8): 2183-2244 (2007) - [c4]Takafumi Kanamori:
Multiclass Boosting Algorithms for Shrinkage Estimators of Class Probability. ALT 2007: 358-372 - 2006
- [j4]Takafumi Kanamori, Ichiro Takeuchi:
Conditional mean estimation under asymmetric and heteroscedastic error by linear combination of quantile regressions. Comput. Stat. Data Anal. 50(12): 3605-3618 (2006) - [j3]Takafumi Kanamori, Takashi Takenouchi, Noboru Murata:
Geometrical Structure of Boosting Algorithm. New Gener. Comput. 25(1): 117-141 (2006) - [c3]Ichiro Takeuchi, Kaname Nomura, Takafumi Kanamori:
The Entire Solution Path of Kernel-based Nonparametric Conditional Quantile Estimator. IJCNN 2006: 153-158 - 2004
- [j2]Noboru Murata, Takashi Takenouchi, Takafumi Kanamori, Shinto Eguchi:
Information Geometry of U-Boost and Bregman Divergence. Neural Comput. 16(7): 1437-1481 (2004) - [c2]Takafumi Kanamori, Takashi Takenouchi, Shinto Eguchi, Noboru Murata:
The Most Robust Loss Function for Boosting. ICONIP 2004: 496-501 - 2002
- [j1]Ichiro Takeuchi, Yoshua Bengio, Takafumi Kanamori:
Robust Regression with Asymmetric Heavy-Tail Noise Distributions. Neural Comput. 14(10): 2469-2496 (2002) - [c1]Takafumi Kanamori:
A New Sequential Algorithm for Regression Problems by Using Mixture Distribution. ICANN 2002: 535-540
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-01 01:09 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint