default search action
Erik J. Bekkers
Person information
- affiliation: University of Amsterdam, Machine Learning Lab (AMLab), The Netherlands
- affiliation (PhD 2017): Technical University Eindhoven (TU/e), Department of Applied Mathematics, The Netherlands
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j15]David W. Romero, Erik J. Bekkers, Jakub M. Tomczak, Mark Hoogendoorn:
Wavelet Networks: Scale-Translation Equivariant Learning From Raw Time-Series. Trans. Mach. Learn. Res. 2024 (2024) - [c33]Erik J. Bekkers, Sharvaree P. Vadgama, Rob Hesselink, Putri A. van der Linden, David W. Romero:
Fast, Expressive SE(n) Equivariant Networks through Weight-Sharing in Position-Orientation Space. ICLR 2024 - [i35]Veljko Kovac, Erik J. Bekkers, Pietro Liò, Floor Eijkelboom:
E(n) Equivariant Message Passing Cellular Networks. CoRR abs/2406.03145 (2024) - [i34]David R. Wessels, David M. Knigge, Samuele Papa, Riccardo Valperga, Sharvaree P. Vadgama, Efstratios Gavves, Erik J. Bekkers:
Grounding Continuous Representations in Geometry: Equivariant Neural Fields. CoRR abs/2406.05753 (2024) - [i33]David M. Knigge, David R. Wessels, Riccardo Valperga, Samuele Papa, Jan-Jakob Sonke, Efstratios Gavves, Erik J. Bekkers:
Space-Time Continuous PDE Forecasting using Equivariant Neural Fields. CoRR abs/2406.06660 (2024) - [i32]Andrew Draganov, Sharvaree P. Vadgama, Erik J. Bekkers:
The Hidden Pitfalls of the Cosine Similarity Loss. CoRR abs/2406.16468 (2024) - [i31]Guillermo Bernárdez, Lev Telyatnikov, Marco Montagna, Federica Baccini, Mathilde Papillon, Miquel Ferriol Galmés, Mustafa Hajij, Theodore Papamarkou, Maria Sofia Bucarelli, Olga Zaghen, Johan Mathe, Audun Myers, Scott Mahan, Hansen Lillemark, Sharvaree P. Vadgama, Erik J. Bekkers, Tim Doster, Tegan Emerson, Henry Kvinge, Katrina Agate, Nesreen K. Ahmed, Pengfei Bai, Michael Banf, Claudio Battiloro, Maxim Beketov, Paul Bogdan, Martin Carrasco, Andrea Cavallo, Yun Young Choi, George Dasoulas, Matous Elphick, Giordan Escalona, Dominik Filipiak, Halley Fritze, Thomas Gebhart, Manel Gil-Sorribes, Salvish Goomanee, Victor Guallar, Liliya Imasheva, Andrei Irimia, Hongwei Jin, Graham Johnson, Nikos Kanakaris, Boshko Koloski, Veljko Kovac, Manuel Lecha, Minho Lee, Pierrick Leroy, Theodore Long, German Magai, Alvaro Martinez, Marissa Masden, Sebastian Meznar, Bertran Miquel-Oliver, Alexis Molina, Alexander Nikitin, Marco Nurisso, Matt Piekenbrock, Yu Qin, Patryk Rygiel, Alessandro Salatiello, Max Schattauer, Pavel Snopov, Julian Suk, Valentina Sánchez, Mauricio Tec, Francesco Vaccarino, Jonas Verhellen, Frédéric Wantiez, Alexander Weers, Patrik Zajec, Blaz Skrlj, Nina Miolane:
ICML Topological Deep Learning Challenge 2024: Beyond the Graph Domain. CoRR abs/2409.05211 (2024) - [i30]Alejandro García-Castellanos, Aniss Aiman Medbouhi, Giovanni Luca Marchetti, Erik J. Bekkers, Danica Kragic:
HyperSteiner: Computing Heuristic Hyperbolic Steiner Minimal Trees. CoRR abs/2409.05671 (2024) - [i29]Oline Ranum, David R. Wessels, Gomer Otterspeer, Erik J. Bekkers, Floris Roelofsen, Jari I. Andersen:
The NGT200 Dataset: Geometric Multi-View Isolated Sign Recognition. CoRR abs/2409.15284 (2024) - 2023
- [j14]Bart M. N. Smets, Jim Portegies, Erik J. Bekkers, Remco Duits:
PDE-Based Group Equivariant Convolutional Neural Networks. J. Math. Imaging Vis. 65(1): 209-239 (2023) - [c32]Sharvaree P. Vadgama, Jakub M. Tomczak, Erik J. Bekkers:
Continuous Kendall Shape Variational Autoencoders. GSI (1) 2023: 73-81 - [c31]Radu A. Cosma, Lukas Knobel, Putri A. van der Linden, David M. Knigge, Erik J. Bekkers:
Geometric Superpixel Representations for Efficient Image Classification with Graph Neural Networks. ICCV (Workshops) 2023: 109-118 - [c30]Yeskendir Koishekenov, Sharvaree P. Vadgama, Riccardo Valperga, Erik J. Bekkers:
Geometric Contrastive Learning. ICCV (Workshops) 2023: 206-215 - [c29]David M. Knigge, David W. Romero, Albert Gu, Efstratios Gavves, Erik J. Bekkers, Jakub Mikolaj Tomczak, Mark Hoogendoorn, Jan-Jakob Sonke:
Modelling Long Range Dependencies in $N$D: From Task-Specific to a General Purpose CNN. ICLR 2023 - [c28]Floor Eijkelboom, Rob Hesselink, Erik J. Bekkers:
E(n) Equivariant Message Passing Simplicial Networks. ICML 2023: 9071-9081 - [c27]Vivien van Veldhuizen, Sharvaree P. Vadgama, Onno J. de Boer, Sybren L. Meijer, Erik J. Bekkers:
Modeling Barrett's Esophagus Progression Using Geometric Variational Autoencoders. CaPTion@MICCAI 2023: 132-142 - [c26]Thijs P. Kuipers, Erik J. Bekkers:
Regular SE(3) Group Convolutions for Volumetric Medical Image Analysis. MICCAI (3) 2023: 252-261 - [c25]Miltiadis Kofinas, Erik J. Bekkers, Naveen Shankar Nagaraja, Efstratios Gavves:
Latent Field Discovery in Interacting Dynamical Systems with Neural Fields. NeurIPS 2023 - [c24]Putri A. van der Linden, David W. Romero, Erik J. Bekkers:
Learned Gridification for Efficient Point Cloud Processing. TAG-ML 2023: 9-20 - [c23]Artem Moskalev, Anna Sepliarskaia, Erik J. Bekkers, Arnold W. M. Smeulders:
On genuine invariance learning without weight-tying. TAG-ML 2023: 218-227 - [c22]Floor Eijkelboom, Erik J. Bekkers, Michael M. Bronstein, Francesco Di Giovanni:
Can strong structural encoding reduce the importance of Message Passing? TAG-ML 2023: 278-288 - [i28]David M. Knigge, David W. Romero, Albert Gu, Efstratios Gavves, Erik J. Bekkers, Jakub M. Tomczak, Mark Hoogendoorn, Jan-Jakob Sonke:
Modelling Long Range Dependencies in N-D: From Task-Specific to a General Purpose CNN. CoRR abs/2301.10540 (2023) - [i27]Yeskendir Koishekenov, Erik J. Bekkers:
An Exploration of Conditioning Methods in Graph Neural Networks. CoRR abs/2305.01933 (2023) - [i26]Floor Eijkelboom, Rob Hesselink, Erik J. Bekkers:
E(n) Equivariant Message Passing Simplicial Networks. CoRR abs/2305.07100 (2023) - [i25]Thijs P. Kuipers, Erik J. Bekkers:
Regular SE(3) Group Convolutions for Volumetric Medical Image Analysis. CoRR abs/2306.13960 (2023) - [i24]Xuan Zhang, Limei Wang, Jacob Helwig, Youzhi Luo, Cong Fu, Yaochen Xie, Meng Liu, Yuchao Lin, Zhao Xu, Keqiang Yan, Keir Adams, Maurice Weiler, Xiner Li, Tianfan Fu, Yucheng Wang, Haiyang Yu, Yuqing Xie, Xiang Fu, Alex Strasser, Shenglong Xu, Yi Liu, Yuanqi Du, Alexandra Saxton, Hongyi Ling, Hannah Lawrence, Hannes Stärk, Shurui Gui, Carl Edwards, Nicholas Gao, Adriana Ladera, Tailin Wu, Elyssa F. Hofgard, Aria Mansouri Tehrani, Rui Wang, Ameya Daigavane, Montgomery Bohde, Jerry Kurtin, Qian Huang, Tuong Phung, Minkai Xu, Chaitanya K. Joshi, Simon V. Mathis, Kamyar Azizzadenesheli, Ada Fang, Alán Aspuru-Guzik, Erik J. Bekkers, Michael M. Bronstein, Marinka Zitnik, Anima Anandkumar, Stefano Ermon, Pietro Liò, Rose Yu, Stephan Günnemann, Jure Leskovec, Heng Ji, Jimeng Sun, Regina Barzilay, Tommi S. Jaakkola, Connor W. Coley, Xiaoning Qian, Xiaofeng Qian, Tess E. Smidt, Shuiwang Ji:
Artificial Intelligence for Science in Quantum, Atomistic, and Continuum Systems. CoRR abs/2307.08423 (2023) - [i23]Putri A. van der Linden, David W. Romero, Erik J. Bekkers:
Learned Gridification for Efficient Point Cloud Processing. CoRR abs/2307.14354 (2023) - [i22]Artem Moskalev, Anna Sepliarskaia, Erik J. Bekkers, Arnold W. M. Smeulders:
On genuine invariance learning without weight-tying. CoRR abs/2308.03904 (2023) - [i21]Erik J. Bekkers, Sharvaree P. Vadgama, Rob D. Hesselink, Putri A. van der Linden, David W. Romero:
Fast, Expressive SE(n) Equivariant Networks through Weight-Sharing in Position-Orientation Space. CoRR abs/2310.02970 (2023) - [i20]Floor Eijkelboom, Erik J. Bekkers, Michael M. Bronstein, Francesco Di Giovanni:
Can strong structural encoding reduce the importance of Message Passing? CoRR abs/2310.15197 (2023) - [i19]Miltiadis Kofinas, Erik J. Bekkers, Naveen Shankar Nagaraja, Efstratios Gavves:
Latent Field Discovery In Interacting Dynamical Systems With Neural Fields. CoRR abs/2310.20679 (2023) - 2022
- [c21]Roel C. Klein, Florence E. van Lieshout, Maarten Z. Kolk, Kylian van Geijtenbeek, Romy Vos, Samuel Ruipérez-Campillo, Ruibin Feng, Brototo Deb, Prasanth Ganesan, Reinoud Knops, Ivana Isgum, Sanjiv M. Narayan, Erik J. Bekkers, Bob D. de Vos, Fleur V. Y. Tjong:
Weakly-Supervised Deep Learning for Left Ventricle Fibrosis Segmentation in Cardiac MRI Using Image-Level Labels. CinC 2022: 1-4 - [c20]Florence E. van Lieshout, Roel C. Klein, Maarten Z. Kolk, Kylian van Geijtenbeek, Romy Vos, Samuel Ruipérez-Campillo, Ruibin Feng, Brototo Deb, Prasanth Ganesan, Reinoud Knops, Ivana Isgum, Sanjiv M. Narayan, Erik J. Bekkers, Bob D. de Vos, Fleur V. Y. Tjong:
Deep Learning for Ventricular Arrhythmia Prediction Using Fibrosis Segmentations on Cardiac MRI Data. CinC 2022: 1-4 - [c19]Erik J. Bekkers, Jelmer M. Wolterink, Angelica I. Avilés-Rivero:
Preface. GeoMedIA 2022: 1-2 - [c18]Renfei Liu, François Lauze, Erik J. Bekkers, Kenny Erleben, Sune Darkner:
Group Convolutional Neural Networks for DWI Segmentation. GeoMedIA 2022: 96-106 - [c17]Johannes Brandstetter, Rob Hesselink, Elise van der Pol, Erik J. Bekkers, Max Welling:
Geometric and Physical Quantities improve E(3) Equivariant Message Passing. ICLR 2022 - [c16]David W. Romero, Robert-Jan Bruintjes, Jakub Mikolaj Tomczak, Erik J. Bekkers, Mark Hoogendoorn, Jan van Gemert:
FlexConv: Continuous Kernel Convolutions With Differentiable Kernel Sizes. ICLR 2022 - [c15]David W. Romero, Anna Kuzina, Erik J. Bekkers, Jakub Mikolaj Tomczak, Mark Hoogendoorn:
CKConv: Continuous Kernel Convolution For Sequential Data. ICLR 2022 - [c14]David M. Knigge, David W. Romero, Erik J. Bekkers:
Exploiting Redundancy: Separable Group Convolutional Networks on Lie Groups. ICML 2022: 11359-11386 - [e1]Erik J. Bekkers, Jelmer M. Wolterink, Angelica I. Avilés-Rivero:
Geometric Deep Learning in Medical Image Analysis, 18 November 2022, Amsterdam, The Netherlands. Proceedings of Machine Learning Research 194, PMLR 2022 [contents] - [i18]David W. Romero, David M. Knigge, Albert Gu, Erik J. Bekkers, Efstratios Gavves, Jakub M. Tomczak, Mark Hoogendoorn:
Towards a General Purpose CNN for Long Range Dependencies in ND. CoRR abs/2206.03398 (2022) - 2021
- [j13]Maxime W. Lafarge, Erik J. Bekkers, Josien P. W. Pluim, Remco Duits, Mitko Veta:
Roto-translation equivariant convolutional networks: Application to histopathology image analysis. Medical Image Anal. 68: 101849 (2021) - [c13]Remco Duits, Bart M. N. Smets, Erik J. Bekkers, Jim Portegies:
Equivariant Deep Learning via Morphological and Linear Scale Space PDEs on the Space of Positions and Orientations. SSVM 2021: 27-39 - [i17]David W. Romero, Anna Kuzina, Erik J. Bekkers, Jakub M. Tomczak, Mark Hoogendoorn:
CKConv: Continuous Kernel Convolution For Sequential Data. CoRR abs/2102.02611 (2021) - [i16]Johannes Brandstetter, Rob Hesselink, Elise van der Pol, Erik J. Bekkers, Max Welling:
Geometric and Physical Quantities improve E(3) Equivariant Message Passing. CoRR abs/2110.02905 (2021) - [i15]David W. Romero, Robert-Jan Bruintjes, Jakub M. Tomczak, Erik J. Bekkers, Mark Hoogendoorn, Jan C. van Gemert:
FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes. CoRR abs/2110.08059 (2021) - [i14]David M. Knigge, David W. Romero, Erik J. Bekkers:
Exploiting Redundancy: Separable Group Convolutional Networks on Lie Groups. CoRR abs/2110.13059 (2021) - [i13]Melle B. Vessies, Sharvaree P. Vadgama, Rutger R. van de Leur, Pieter A. F. M. Doevendans, Rutger J. Hassink, Erik J. Bekkers, René van Es:
Interpretable ECG classification via a query-based latent space traversal (qLST). CoRR abs/2111.07386 (2021) - [i12]Jan Zuiderveld, Marco Federici, Erik J. Bekkers:
Towards Lightweight Controllable Audio Synthesis with Conditional Implicit Neural Representations. CoRR abs/2111.08462 (2021) - [i11]Hugo Aguettaz, Erik J. Bekkers, Michaël Defferrard:
ChebLieNet: Invariant Spectral Graph NNs Turned Equivariant by Riemannian Geometry on Lie Groups. CoRR abs/2111.12139 (2021) - 2020
- [c12]Erik J. Bekkers:
B-Spline CNNs on Lie groups. ICLR 2020 - [c11]David W. Romero, Erik J. Bekkers, Jakub M. Tomczak, Mark Hoogendoorn:
Attentive Group Equivariant Convolutional Networks. ICML 2020: 8188-8199 - [i10]Bart M. N. Smets, Jim Portegies, Erik J. Bekkers, Remco Duits:
PDE-based Group Equivariant Convolutional Neural Networks. CoRR abs/2001.09046 (2020) - [i9]David W. Romero, Erik J. Bekkers, Jakub M. Tomczak, Mark Hoogendoorn:
Attentive Group Equivariant Convolutional Networks. CoRR abs/2002.03830 (2020) - [i8]Maxime W. Lafarge, Erik J. Bekkers, Josien P. W. Pluim, Remco Duits, Mitko Veta:
Roto-Translation Equivariant Convolutional Networks: Application to Histopathology Image Analysis. CoRR abs/2002.08725 (2020) - [i7]David W. Romero, Erik J. Bekkers, Jakub M. Tomczak, Mark Hoogendoorn:
Wavelet Networks: Scale Equivariant Learning From Raw Waveforms. CoRR abs/2006.05259 (2020)
2010 – 2019
- 2019
- [j12]Remco Duits, Erik J. Bekkers, Alexey Mashtakov:
Fourier Transform on the Homogeneous Space of 3D Positions and Orientations for Exact Solutions to Linear PDEs. Entropy 21(1): 38 (2019) - [i6]Erik J. Bekkers:
B-Spline CNNs on Lie Groups. CoRR abs/1909.12057 (2019) - 2018
- [j11]Erik J. Bekkers, Da Chen, Jorg M. Portegies:
Nilpotent Approximations of Sub-Riemannian Distances for Fast Perceptual Grouping of Blood Vessels in 2D and 3D. J. Math. Imaging Vis. 60(6): 882-899 (2018) - [j10]Michiel Janssen, A. J. E. M. Janssen, Erik J. Bekkers, Javier Oliván Bescós, Remco Duits:
Design and Processing of Invertible Orientation Scores of 3D Images. J. Math. Imaging Vis. 60(9): 1427-1458 (2018) - [j9]Erik J. Bekkers, Marco Loog, Bart M. ter Haar Romeny, Remco Duits:
Template Matching via Densities on the Roto-Translation Group. IEEE Trans. Pattern Anal. Mach. Intell. 40(2): 452-466 (2018) - [j8]Jiong Zhang, Erik J. Bekkers, Da Chen, Tos T. J. M. Berendschot, Jan Schouten, Josien P. W. Pluim, Yonggang Shi, Behdad Dashtbozorg, Bart M. ter Haar Romeny:
Reconnection of Interrupted Curvilinear Structures via Cortically Inspired Completion for Ophthalmologic Images. IEEE Trans. Biomed. Eng. 65(5): 1151-1165 (2018) - [c10]Erik J. Bekkers, Maxime W. Lafarge, Mitko Veta, Koen A. J. Eppenhof, Josien P. W. Pluim, Remco Duits:
Roto-Translation Covariant Convolutional Networks for Medical Image Analysis. MICCAI (1) 2018: 440-448 - [i5]Erik J. Bekkers, Maxime W. Lafarge, Mitko Veta, Koen A. J. Eppenhof, Josien P. W. Pluim, Remco Duits:
Roto-Translation Covariant Convolutional Networks for Medical Image Analysis. CoRR abs/1804.03393 (2018) - 2017
- [j7]Alexey Mashtakov, Remco Duits, Yuri Sachkov, Erik J. Bekkers, Ivan Beschastnyi:
Tracking of Lines in Spherical Images via Sub-Riemannian Geodesics in SO(3). J. Math. Imaging Vis. 58(2): 239-264 (2017) - [j6]Jiong Zhang, Yuan Chen, Erik J. Bekkers, Meili Wang, Behdad Dashtbozorg, Bart M. ter Haar Romeny:
Retinal vessel delineation using a brain-inspired wavelet transform and random forest. Pattern Recognit. 69: 107-123 (2017) - [c9]Erik J. Bekkers, Remco Duits, Alexey Mashtakov, Yuri Sachkov:
Vessel Tracking via Sub-Riemannian Geodesics on the Projective Line Bundle. GSI 2017: 773-781 - [c8]Michiel H. J. Janssen, Tom C. J. Dela Haije, Frank C. Martin, Erik J. Bekkers, Remco Duits:
The Hessian of Axially Symmetric Functions on SE(3) and Application in 3D Image Analysis. SSVM 2017: 643-655 - [i4]Michiel H. J. Janssen, A. J. E. M. Janssen, Erik J. Bekkers, Javier Oliván Bescós, Remco Duits:
Design and Processing of Invertible Orientation Scores of 3D Images for Enhancement of Complex Vasculature. CoRR abs/1707.02191 (2017) - 2016
- [j5]Bart M. ter Haar Romeny, Erik J. Bekkers, Jiong Zhang, Samaneh Abbasi-Sureshjani, Fan Huang, Remco Duits, Behdad Dashtbozorg, Tos Berendschot, Iris Smit-Ockeloen, Koen A. J. Eppenhof, Jinghan Feng, Julius Hannink, Jan Schouten, Mengmeng Tong, Hanhui Wu, Han J. W. van Triest, Shanshan Zhu, Dali Chen, Wei He, Ling Xu, Ping Han, Yan Kang:
Brain-inspired algorithms for retinal image analysis. Mach. Vis. Appl. 27(8): 1117-1135 (2016) - [j4]Jiong Zhang, Behdad Dashtbozorg, Erik J. Bekkers, Josien P. W. Pluim, Remco Duits, Bart M. ter Haar Romeny:
Robust Retinal Vessel Segmentation via Locally Adaptive Derivative Frames in Orientation Scores. IEEE Trans. Medical Imaging 35(12): 2631-2644 (2016) - [c7]Samaneh Abbasi-Sureshjani, Iris Smit-Ockeloen, Erik J. Bekkers, Behdad Dashtbozorg, Bart M. ter Haar Romeny:
Automatic detection of vascular bifurcations and crossings in retinal images using orientation scores. ISBI 2016: 189-192 - [i3]Erik J. Bekkers, Marco Loog, Bart M. ter Haar Romeny, Remco Duits:
Template Matching on the Roto-Translation Group. CoRR abs/1603.03304 (2016) - 2015
- [j3]Erik J. Bekkers, Remco Duits, Alexey Mashtakov, Gonzalo R. Sanguinetti:
A PDE Approach to Data-Driven Sub-Riemannian Geodesics in SE(2). SIAM J. Imaging Sci. 8(4): 2740-2770 (2015) - [c6]Gonzalo Sanguinetti, Erik J. Bekkers, Remco Duits, Michiel H. J. Janssen, Alexey Mashtakov, Jean-Marie Mirebeau:
Sub-Riemannian Fast Marching in SE(2). CIARP 2015: 366-374 - [c5]Jiong Zhang, Erik J. Bekkers, Samaneh Abbasi-Sureshjani, Behdad Dashtbozorg, Bart M. ter Haar Romeny:
Robust and Fast Vessel Segmentation via Gaussian Derivatives in Orientation Scores. ICIAP (1) 2015: 537-547 - [c4]Erik J. Bekkers, Remco Duits, Alexey Mashtakov, Gonzalo R. Sanguinetti:
Data-Driven Sub-Riemannian Geodesics in SE(2). SSVM 2015: 613-625 - 2014
- [j2]Erik J. Bekkers, Remco Duits, Tos Berendschot, Bart M. ter Haar Romeny:
A Multi-Orientation Analysis Approach to Retinal Vessel Tracking. J. Math. Imaging Vis. 49(3): 583-610 (2014) - [c3]Erik J. Bekkers, Remco Duits, Marco Loog:
Training of Templates for Object Recognition in Invertible Orientation Scores: Application to Optic Nerve Head Detection in Retinal Images. EMMCVPR 2014: 464-477 - [c2]Erik J. Bekkers, Remco Duits, Bart M. ter Haar Romeny:
Optic Nerve Head Detection via Group Correlations in Multi-orientation Transforms. ICIAR (2) 2014: 293-302 - [c1]Julius Hannink, Remco Duits, Erik J. Bekkers:
Crossing-Preserving Multi-scale Vesselness. MICCAI (2) 2014: 603-610 - [i2]Julius Hannink, Remco Duits, Erik J. Bekkers:
Vesselness via Multiple Scale Orientation Scores. CoRR abs/1402.4963 (2014) - 2012
- [i1]Erik J. Bekkers, Remco Duits, Bart M. ter Haar Romeny, Tos Berendschot:
A New Retinal Vessel Tracking Method Based on Orientation Scores. CoRR abs/1212.3530 (2012)
2000 – 2009
- 2008
- [j1]Erik J. Bekkers, Charles A. Taylor:
Multiscale Vascular Surface Model Generation From Medical Imaging Data Using Hierarchical Features. IEEE Trans. Medical Imaging 27(3): 331-341 (2008)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-16 21:27 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint