default search action
Murray Patterson
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j31]Zahra Tayebi, Sarwan Ali, Taslim Murad, Imdadullah Khan, Murray Patterson:
PseAAC2Vec protein encoding for TCR protein sequence classification. Comput. Biol. Medicine 170: 107956 (2024) - [j30]Sarwan Ali, Tamkanat E. Ali, Taslim Murad, Haris Mansoor, Murray Patterson:
Molecular sequence classification using efficient kernel based embedding. Inf. Sci. 679: 121100 (2024) - [j29]Murray Patterson:
Special Issue, Part I 19th International Symposium on Bioinformatics Research and Applications (ISBRA 2023). J. Comput. Biol. 31(6): 473-474 (2024) - [j28]Sarwan Ali, Madiha Shabbir, Haris Mansoor, Prakash Chourasia, Murray Patterson:
Elliptic geometry-based kernel matrix for improved biological sequence classification. Knowl. Based Syst. 304: 112479 (2024) - [j27]Sarwan Ali, Prakash Chourasia, Murray Patterson:
From PDB files to protein features: a comparative analysis of PDB bind and STCRDAB datasets. Medical Biol. Eng. Comput. 62(8): 2449-2483 (2024) - [c42]Sarwan Ali, Haris Mansoor, Prakash Chourasia, Yasir Ali, Murray Patterson:
Gaussian Beltrami-Klein Model for Protein Sequence Classification: A Hyperbolic Approach. ISBRA (1) 2024: 52-62 - [c41]Sarwan Ali, Tamkanat E. Ali, Prakash Chourasia, Murray Patterson:
A Universal Non-parametric Approach for Improved Molecular Sequence Analysis. PKDD (4) 2024: 194-206 - [c40]Taslim Murad, Sarwan Ali, Murray Patterson:
Weighted Chaos Game Representation for Molecular Sequence Classification. PKDD (4) 2024: 234-245 - [i31]Sarwan Ali, Tamkanat E. Ali, Prakash Chourasia, Murray Patterson:
A Universal Non-Parametric Approach For Improved Molecular Sequence Analysis. CoRR abs/2402.08117 (2024) - [i30]Sarwan Ali, Prakash Chourasia, Murray Patterson:
Expanding Chemical Representation with k-mers and Fragment-based Fingerprints for Molecular Fingerprinting. CoRR abs/2403.19844 (2024) - [i29]Sarwan Ali, Prakash Chourasia, Bipin Koirala, Murray Patterson:
Nearest Neighbor CCP-Based Molecular Sequence Analysis. CoRR abs/2409.04922 (2024) - [i28]Taslim Murad, Prakash Chourasia, Sarwan Ali, Murray Patterson:
DANCE: Deep Learning-Assisted Analysis of Protein Sequences Using Chaos Enhanced Kaleidoscopic Images. CoRR abs/2409.06694 (2024) - [i27]Sarwan Ali, Taslim Murad, Prakash Chourasia, Haris Mansoor, Imdadullah Khan, Pin-Yu Chen, Murray Patterson:
Position Specific Scoring Is All You Need? Revisiting Protein Sequence Classification Tasks. CoRR abs/2410.12655 (2024) - [i26]Sarwan Ali, Prakash Chourasia, Haris Mansoor, Bipin Koirala, Murray Patterson:
MIK: Modified Isolation Kernel for Biological Sequence Visualization, Classification, and Clustering. CoRR abs/2410.15688 (2024) - 2023
- [j26]Mukul S. Bansal, Ion I. Mandoiu, Marmar Moussa, Murray Patterson, Sanguthevar Rajasekaran, Pavel Skums, Alexander Zelikovsky:
Special Issue: 11th International Computational Advances in Bio and Medical Sciences (ICCABS 2021). J. Comput. Biol. 30(4): 363-365 (2023) - [j25]Sarwan Ali, Babatunde Bello, Zahra Tayebi, Murray Patterson:
Characterizing SARS-CoV-2 Spike Sequences Based on Geographical Location. J. Comput. Biol. 30(4): 432-445 (2023) - [j24]Prakash Chourasia, Sarwan Ali, Simone Ciccolella, Gianluca Della Vedova, Murray Patterson:
Reads2Vec: Efficient Embedding of Raw High-Throughput Sequencing Reads Data. J. Comput. Biol. 30(4): 469-491 (2023) - [j23]Sarwan Ali, Prakash Chourasia, Zahra Tayebi, Babatunde Bello, Murray Patterson:
ViralVectors: compact and scalable alignment-free virome feature generation. Medical Biol. Eng. Comput. 61(10): 2607-2626 (2023) - [j22]Taslim Murad, Sarwan Ali, Imdadullah Khan, Murray Patterson:
Spike2CGR: an efficient method for spike sequence classification using chaos game representation. Mach. Learn. 112(10): 3633-3658 (2023) - [j21]Sarwan Ali, Bikram Sahoo, Muhammad Asad Khan, Alexander Zelikovsky, Imdadullah Khan, Murray Patterson:
Efficient Approximate Kernel Based Spike Sequence Classification. IEEE ACM Trans. Comput. Biol. Bioinform. 20(6): 3376-3388 (2023) - [c39]Taslim Murad, Sarwan Ali, Prakash Chourasia, Haris Mansoor, Murray Patterson:
Circular Arc Length-Based Kernel Matrix For Protein Sequence Classification. IEEE Big Data 2023: 1429-1437 - [c38]Sarwan Ali, Babatunde Bello, Prakash Chourasia, Ria Thazhe Punathil, Pin-Yu Chen, Imdadullah Khan, Murray Patterson:
Counterfactually Guided Policy Transfer in Clinical Settings. CHIL 2023: 6-18 - [c37]Mansoor Ahmed, Usama Sardar, Sarwan Ali, Shafiq Alam, Murray Patterson, Imdadullah Khan:
Robust Brain Age Estimation via Regression Models and MRI-Derived Features. ICCCI (CCIS Volume) 2023: 661-674 - [c36]Sarwan Ali, Prakash Chourasia, Murray Patterson:
When Biology has Chemistry: Solubility And Drug Subcategory Prediction using SMILES Strings. Tiny Papers @ ICLR 2023 - [c35]Zahra Tayebi, Sarwan Ali, Prakash Chourasia, Taslim Murad, Murray Patterson:
T Cell Receptor Protein Sequences and Sparse Coding: A Novel Approach to Cancer Classification. ICONIP (10) 2023: 215-227 - [c34]Sarwan Ali, Taslim Murad, Murray Patterson:
PCD2Vec: A Poisson Correction Distance Based Approach for Viral Host Classification. IJCNN 2023: 1-8 - [c33]Prakash Chourasia, Zahra Tayebi, Sarwan Ali, Murray Patterson:
Empowering Pandemic Response with Federated Learning for Protein Sequence Data Analysis. IJCNN 2023: 1-8 - [c32]Taslim Murad, Sarwan Ali, Murray Patterson:
A New Direction in Membranolytic Anticancer Peptides classification: Combining Spaced k-mers with Chaos Game Representation. INNS DLIA@IJCNN 2023: 666-675 - [c31]Sarwan Ali, Pin-Yu Chen, Murray Patterson:
Unveiling the Robustness of Machine Learning Models in Classifying COVID-19 Spike Sequences. ISBRA 2023: 1-15 - [c30]Sarwan Ali, Usama Sardar, Imdadullah Khan, Murray Patterson:
Efficient Sequence Embedding for SARS-CoV-2 Variants Classification. ISBRA 2023: 16-30 - [c29]Usama Sardar, Sarwan Ali, Muhammad Sohaib Ayub, Muhammad Shoaib, Khurram Bashir, Imdadullah Khan, Murray Patterson:
Sequence-Based Nanobody-Antigen Binding Prediction. ISBRA 2023: 227-240 - [c28]Sarwan Ali, Prakash Chourasia, Murray Patterson:
PDB2Vec: Using 3D Structural Information for Improved Protein Analysis. ISBRA 2023: 376-386 - [c27]Sarwan Ali, Haris Mansoor, Prakash Chourasia, Murray Patterson:
Hist2Vec: Kernel-Based Embeddings for Biological Sequence Classification. ISBRA 2023: 387-397 - [c26]Prakash Chourasia, Taslim Murad, Sarwan Ali, Murray Patterson:
Enhancing t-SNE Performance for Biological Sequencing Data Through Kernel Selection. ISBRA 2023: 442-452 - [c25]Zahra Tayebi, Akshay Juyal, Alexander Zelikovsky, Murray Patterson:
Simulating Tumor Evolution from scDNA-Seq as an Accumulation of both SNVs and CNAs. ISBRA 2023: 530-540 - [c24]Sarwan Ali, Prakash Chourasia, Murray Patterson:
Anderson Acceleration for Bioinformatics-Based Machine Learning. KDH@IJCAI 2023 - [c23]Sarwan Ali, Usama Sardar, Murray Patterson, Imdadullah Khan:
BioSequence2Vec: Efficient Embedding Generation for Biological Sequences. PAKDD (2) 2023: 173-185 - [e2]Xuan Guo, Serghei Mangul, Murray Patterson, Alexander Zelikovsky:
Bioinformatics Research and Applications - 19th International Symposium, ISBRA 2023, Wrocław, Poland, October 9-12, 2023, Proceedings. Lecture Notes in Computer Science 14248, Springer 2023, ISBN 978-981-99-7073-5 [contents] - [i25]Sarwan Ali, Prakash Chourasia, Murray Patterson:
Anderson Acceleration For Bioinformatics-Based Machine Learning. CoRR abs/2302.00347 (2023) - [i24]Prakash Chourasia, Taslim Murad, Zahra Tayebi, Sarwan Ali, Imdadullah Khan, Murray Patterson:
Efficient Classification of SARS-CoV-2 Spike Sequences Using Federated Learning. CoRR abs/2302.08688 (2023) - [i23]Taslim Murad, Sarwan Ali, Murray Patterson:
Exploring The Potential Of GANs In Biological Sequence Analysis. CoRR abs/2303.02421 (2023) - [i22]Sarwan Ali, Usama Sardar, Murray Patterson, Imdadullah Khan:
BioSequence2Vec: Efficient Embedding Generation For Biological Sequences. CoRR abs/2304.00291 (2023) - [i21]Sarwan Ali, Prakash Chourasia, Zahra Tayebi, Babatunde Bello, Murray Patterson:
ViralVectors: Compact and Scalable Alignment-free Virome Feature Generation. CoRR abs/2304.02891 (2023) - [i20]Sarwan Ali, Taslim Murad, Murray Patterson:
PCD2Vec: A Poisson Correction Distance-Based Approach for Viral Host Classification. CoRR abs/2304.06731 (2023) - [i19]Sarwan Ali, Babatunde Bello, Prakash Chourasia, Ria Thazhe Punathil, Pin-Yu Chen, Imdadullah Khan, Murray Patterson:
Virus2Vec: Viral Sequence Classification Using Machine Learning. CoRR abs/2304.12328 (2023) - [i18]Zahra Tayebi, Sarwan Ali, Prakash Chourasia, Taslim Murad, Murray Patterson:
T Cell Receptor Protein Sequences and Sparse Coding: A Novel Approach to Cancer Classification. CoRR abs/2304.13145 (2023) - [i17]Mansoor Ahmed, Usama Sardar, Sarwan Ali, Shafiq Alam, Murray Patterson, Imdadullah Khan:
Robust Brain Age Estimation via Regression Models and MRI-derived Features. CoRR abs/2306.05514 (2023) - [i16]Usama Sardar, Sarwan Ali, Muhammad Sohaib Ayub, Muhammad Shoaib, Khurram Bashir, Imdadullah Khan, Murray Patterson:
Sequence-Based Nanobody-Antigen Binding Prediction. CoRR abs/2308.01920 (2023) - 2022
- [j20]Kaustubh Khandai, Cristian Navarro-Martinez, Brendan Smith, Rebecca Buonopane, S. Ashley Byun, Murray Patterson:
Determining Significant Correlation Between Pairs of Extant Characters in a Small Parsimony Framework. J. Comput. Biol. 29(10): 1132-1154 (2022) - [j19]Sarwan Ali, Yijing Zhou, Murray Patterson:
Efficient analysis of COVID-19 clinical data using machine learning models. Medical Biol. Eng. Comput. 60(7): 1881-1896 (2022) - [c22]Taslim Murad, Prakash Chourasia, Sarwan Ali, Murray Patterson:
Hashing2Vec: Fast Embedding Generation for SARS-CoV-2 Spike Sequence Classification. ACML 2022: 754-769 - [c21]Prakash Chourasia, Sarwan Ali, Murray Patterson:
Informative Initialization and Kernel Selection Improves t-SNE for Biological Sequences. IEEE Big Data 2022: 101-106 - [c20]Sarwan Ali, Taslim Murad, Prakash Chourasia, Murray Patterson:
Spike2Signal: Classifying Coronavirus Spike Sequences with Deep Learning. BigDataService 2022: 81-88 - [c19]Sarwan Ali, Taslim Murad, Murray Patterson:
PSSM2Vec: A Compact Alignment-Free Embedding Approach for Coronavirus Spike Sequence Classification. ICONIP (7) 2022: 420-432 - [e1]Mukul S. Bansal, Ion I. Mandoiu, Marmar Moussa, Murray Patterson, Sanguthevar Rajasekaran, Pavel Skums, Alexander Zelikovsky:
Computational Advances in Bio and Medical Sciences: 11th International Conference, ICCABS 2021, Virtual Event, December 16-18, 2021, Revised Selected Papers. Lecture Notes in Computer Science 13254, Springer International Publishing 2022, ISBN 978-3-031-17530-5 [contents] - [i15]Sarwan Ali, Babatunde Bello, Prakash Chourasia, Ria Thazhe Punathil, Yijing Zhou, Murray Patterson:
PWM2Vec: An Efficient Embedding Approach for Viral Host Specification from Coronavirus Spike Sequences. CoRR abs/2201.02273 (2022) - [i14]Sarwan Ali, Bikram Sahoo, Alexander Zelikovskiy, Pin-Yu Chen, Murray Patterson:
Benchmarking Machine Learning Robustness in Covid-19 Genome Sequence Classification. CoRR abs/2207.08898 (2022) - [i13]Sarwan Ali, Bikram Sahoo, Muhammad Asad Khan, Alexander Zelikovsky, Imdadullah Khan, Murray Patterson:
Efficient Approximate Kernel Based Spike Sequence Classification. CoRR abs/2209.04952 (2022) - [i12]Prakash Chourasia, Sarwan Ali, Simone Ciccolella, Gianluca Della Vedova, Murray Patterson:
Reads2Vec: Efficient Embedding of Raw High-Throughput Sequencing Reads Data. CoRR abs/2211.08267 (2022) - [i11]Prakash Chourasia, Sarwan Ali, Murray Patterson:
Informative Initialization and Kernel Selection Improves t-SNE for Biological Sequences. CoRR abs/2211.09263 (2022) - 2021
- [j18]Zahra Tayebi, Sarwan Ali, Murray Patterson:
Robust Representation and Efficient Feature Selection Allows for Effective Clustering of SARS-CoV-2 Variants. Algorithms 14(12): 348 (2021) - [j17]Simone Ciccolella, Camir Ricketts, Mauricio Soto Gomez, Murray Patterson, Dana Silverbush, Paola Bonizzoni, Iman Hajirasouliha, Gianluca Della Vedova:
Inferring cancer progression from Single-Cell Sequencing while allowing mutation losses. Bioinform. 37(3): 326-333 (2021) - [j16]Andrew Melnyk, Fatemeh Mohebbi, Sergey Knyazev, Bikram Sahoo, Roya Hosseini, Pavel Skums, Alex Zelikovsky, Murray Patterson:
From Alpha to Zeta: Identifying Variants and Subtypes of SARS-CoV-2 Via Clustering. J. Comput. Biol. 28(11): 1113-1129 (2021) - [j15]Sarwan Ali, Simone Ciccolella, Lorenzo Lucarella, Gianluca Della Vedova, Murray Patterson:
Simpler and Faster Development of Tumor Phylogeny Pipelines. J. Comput. Biol. 28(11): 1142-1155 (2021) - [j14]Simone Ciccolella, Murray Patterson, Paola Bonizzoni, Gianluca Della Vedova:
Effective Clustering for Single Cell Sequencing Cancer Data. IEEE J. Biomed. Health Informatics 25(11): 4068-4078 (2021) - [c18]Sarwan Ali, Murray Patterson:
Spike2Vec: An Efficient and Scalable Embedding Approach for COVID-19 Spike Sequences. IEEE BigData 2021: 1533-1540 - [c17]Prakash Chourasia, Sarwan Ali, Simone Ciccolella, Gianluca Della Vedova, Murray Patterson:
Clustering SARS-CoV-2 Variants from Raw High-Throughput Sequencing Reads Data. ICCABS 2021: 133-148 - [c16]Sarwan Ali, Bikram Sahoo, Naimat Ullah, Alexander Zelikovskiy, Murray Patterson, Imdadullah Khan:
A k-mer Based Approach for SARS-CoV-2 Variant Identification. ISBRA 2021: 153-164 - [c15]Brendan Smith, Cristian Navarro-Martinez, Rebecca Buonopane, S. Ashley Byun, Murray Patterson:
Correlated Evolution in the Small Parsimony Framework. ISBRA 2021: 608-619 - [i10]Sarwan Ali, Bikram Sahoo, Naimat Ullah, Alexander Zelikovskiy, Murray Patterson, Imdadullah Khan:
A k-mer Based Approach for SARS-CoV-2 Variant Identification. CoRR abs/2108.03465 (2021) - [i9]Sarwan Ali, Tamkanat E. Ali, Muhammad Asad Khan, Imdadullah Khan, Murray Patterson:
Effective and scalable clustering of SARS-CoV-2 sequences. CoRR abs/2108.08143 (2021) - [i8]Sarwan Ali, Murray Patterson:
Spike2Vec: An Efficient and Scalable Embedding Approach for COVID-19 Spike Sequences. CoRR abs/2109.05019 (2021) - [i7]Sarwan Ali, Babatunde Bello, Murray Patterson:
Classifying COVID-19 Spike Sequences from Geographic Location Using Deep Learning. CoRR abs/2110.00809 (2021) - [i6]Sarwan Ali, Yijing Zhou, Murray Patterson:
Efficient Analysis of COVID-19 Clinical Data using Machine Learning Models. CoRR abs/2110.09606 (2021) - [i5]Zahra Tayebi, Sarwan Ali, Murray Patterson:
Robust Representation and Efficient Feature Selection Allows for Effective Clustering of SARS-CoV-2 Variants. CoRR abs/2110.09622 (2021) - 2020
- [j13]Simone Ciccolella, Mauricio Soto Gomez, Murray D. Patterson, Gianluca Della Vedova, Iman Hajirasouliha, Paola Bonizzoni:
gpps: an ILP-based approach for inferring cancer progression with mutation losses from single cell data. BMC Bioinform. 21-S(1): 413 (2020) - [c14]Andrew Melnyk, Fatemeh Mohebbi, Sergey Knyazev, Bikram Sahoo, Roya Hosseini, Pavel Skums, Alex Zelikovsky, Murray Patterson:
Clustering Based Identification of SARS-CoV-2 Subtypes. ICCABS 2020: 127-141
2010 – 2019
- 2019
- [j12]Raffaella Rizzi, Stefano Beretta, Murray Patterson, Yuri Pirola, Marco Previtali, Gianluca Della Vedova, Paola Bonizzoni:
Overlap graphs and de Bruijn graphs: data structures for de novo genome assembly in the big data era. Quant. Biol. 7(4): 278-292 (2019) - [c13]Simone Ciccolella, Murray D. Patterson, Paola Bonizzoni, Gianluca Della Vedova:
Effective Clustering for Single Cell Sequencing Cancer Data. BCB 2019: 437-446 - [c12]Giulia Bernardini, Paola Bonizzoni, Gianluca Della Vedova, Murray Patterson:
A Rearrangement Distance for Fully-Labelled Trees. CPM 2019: 28:1-28:15 - [i4]Giulia Bernardini, Paola Bonizzoni, Gianluca Della Vedova, Murray Patterson:
A rearrangement distance for fully-labelled trees. CoRR abs/1904.01321 (2019) - 2018
- [j11]Stefano Beretta, Murray Patterson, Simone Zaccaria, Gianluca Della Vedova, Paola Bonizzoni:
HapCHAT: adaptive haplotype assembly for efficiently leveraging high coverage in long reads. BMC Bioinform. 19(1): 252:1-252:19 (2018) - [c11]Simone Ciccolella, Mauricio Soto Gomez, Murray Patterson, Gianluca Della Vedova, Iman Hajirasouliha, Paola Bonizzoni:
gpps: an ILP-based approach for inferring cancer progression with mutation losses from single cell data. ICCABS 2018: 1 - 2017
- [c10]Gianluca Della Vedova, Murray Patterson, Raffaella Rizzi, Mauricio Soto Gomez:
Character-Based Phylogeny Construction and Its Application to Tumor Evolution. CiE 2017: 3-13 - 2016
- [j10]Andrea Bracciali, Marco Aldinucci, Murray Patterson, Tobias Marschall, Nadia Pisanti, Ivan Merelli, Massimo Torquati:
PWHATSHAP: efficient haplotyping for future generation sequencing. BMC Bioinform. 17(S-11): 342 (2016) - 2015
- [j9]Murray Patterson, Tobias Marschall, Nadia Pisanti, Leo van Iersel, Leen Stougie, Gunnar W. Klau, Alexander Schönhuth:
WhatsHap: Weighted Haplotype Assembly for Future-Generation Sequencing Reads. J. Comput. Biol. 22(6): 498-509 (2015) - 2014
- [c9]Marco Aldinucci, Andrea Bracciali, Tobias Marschall, Murray Patterson, Nadia Pisanti, Massimo Torquati:
High-Performance Haplotype Assembly. CIBB 2014: 245-258 - [c8]Murray Patterson, Tobias Marschall, Nadia Pisanti, Leo van Iersel, Leen Stougie, Gunnar W. Klau, Alexander Schönhuth:
WhatsHap: Haplotype Assembly for Future-Generation Sequencing Reads. RECOMB 2014: 237-249 - 2013
- [j8]Mohammed El-Kebir, Tobias Marschall, Inken Wohlers, Murray Patterson, Jaap Heringa, Alexander Schönhuth, Gunnar W. Klau:
Mapping proteins in the presence of paralogs using units of coevolution. BMC Bioinform. 14(S-15): S18 (2013) - [j7]Murray Patterson, Gergely J. Szöllosi, Vincent Daubin, Eric Tannier:
Lateral gene transfer, rearrangement, reconciliation. BMC Bioinform. 14(S-15): S4 (2013) - [c7]Cédric Chauve, Murray Patterson, Ashok Rajaraman:
Hypergraph Covering Problems Motivated by Genome Assembly Questions. IWOCA 2013: 428-432 - [i3]Ján Manuch, Murray Patterson, Roland Wittler, Cédric Chauve, Eric Tannier:
Linearization of ancestral multichromosomal genomes. CTW 2013: 169-173 - [i2]Cédric Chauve, Murray Patterson, Ashok Rajaraman:
Hypergraph covering problems motivated by genome assembly questions. CoRR abs/1306.4353 (2013) - 2012
- [j6]Ján Manuch, Murray Patterson, Roland Wittler, Cédric Chauve, Eric Tannier:
Linearization of ancestral multichromosomal genomes. BMC Bioinform. 13(S-19): S11 (2012) - [j5]Ján Manuch, Murray Patterson, Cédric Chauve:
Hardness results on the gapped consecutive-ones property problem. Discret. Appl. Math. 160(18): 2760-2768 (2012) - 2011
- [j4]Roland Wittler, Ján Manuch, Murray Patterson, Jens Stoye:
Consistency of Sequence-Based Gene Clusters. J. Comput. Biol. 18(9): 1023-1039 (2011) - [j3]Ján Manuch, Murray Patterson:
The Complexity of the Gapped Consecutive-Ones Property Problem for Matrices of Bounded Maximum Degree. J. Comput. Biol. 18(9): 1243-1253 (2011) - [c6]Cédric Chauve, Ján Manuch, Murray Patterson, Roland Wittler:
Tractability Results for the Consecutive-Ones Property with Multiplicity. CPM 2011: 90-103 - [c5]Ján Manuch, Murray Patterson, Arvind Gupta:
Towards a Characterisation of the Generalised Cladistic Character Compatibility Problem for Non-branching Character Trees. ISBRA 2011: 440-451 - 2010
- [c4]Ján Manuch, Murray Patterson, Sheung-Hung Poon, Chris Thachuk:
Complexity of Finding Non-Planar Rectilinear Drawings of Graphs. GD 2010: 305-316 - [c3]Ján Manuch, Murray Patterson:
The Complexity of the Gapped Consecutive-Ones Property Problem for Matrices of Bounded Maximum Degree. RECOMB-CG 2010: 278-289
2000 – 2009
- 2009
- [j2]Cédric Chauve, Ján Manuch, Murray Patterson:
On the Gapped Consecutive-Ones Property. Electron. Notes Discret. Math. 34: 121-125 (2009) - [c2]Ján Manuch, Murray Patterson, Arvind Gupta:
On the Generalised Character Compatibility Problem for Non-branching Character Trees. COCOON 2009: 268-276 - [i1]Cédric Chauve, Ján Manuch, Murray Patterson:
Hardness Results for the Gapped Consecutive-Ones Property. CoRR abs/0912.0309 (2009) - 2007
- [c1]Murray Patterson, Yongmei Liu, Eugenia Ternovska, Arvind Gupta:
Grounding for Model Expansion in k-Guarded Formulas with Inductive Definitions. IJCAI 2007: 161-166 - 2003
- [j1]Thomas Bruckner, Robbie Morrison, Chris Handley, Murray Patterson:
High-Resolution Modeling of Energy-Services Supply Systems Using deeco: Overview and Application to Policy Development. Ann. Oper. Res. 121(1-4): 151-180 (2003)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-27 21:21 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint