default search action
Ojas Parekh
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j23]Vahan Mkrtchyan, Ojas Parekh, K. Subramani:
Approximation Algorithms for Partial Vertex Covers in Trees. Int. J. Found. Comput. Sci. 35(4): 387-407 (2024) - [c39]Eunou Lee, Ojas Parekh:
An Improved Quantum Max Cut Approximation via Maximum Matching. ICALP 2024: 105:1-105:11 - [c38]John Kallaugher, Ojas Parekh, Nadezhda Voronova:
Exponential Quantum Space Advantage for Approximating Maximum Directed Cut in the Streaming Model. STOC 2024: 1805-1815 - [i22]John Kallaugher, Ojas Parekh, Kevin Thompson, Yipu Wang, Justin Yirka:
Complexity Classification of Product State Problems for Local Hamiltonians. CoRR abs/2401.06725 (2024) - [i21]John Kallaugher, Ojas Parekh, Nadezhda Voronova:
How to Design a Quantum Streaming Algorithm Without Knowing Anything About Quantum Computing. CoRR abs/2410.18922 (2024) - 2023
- [j22]Ojas Parekh:
Synergies Between Operations Research and Quantum Information Science. INFORMS J. Comput. 35(2): 266-273 (2023) - [j21]Carleton Coffrin, Elisabeth Lobe, Giacomo Nannicini, Ojas Parekh:
Special Issue of INFORMS Journal on Computing - Quantum Computing and Operations Research. INFORMS J. Comput. 35(3): 521-522 (2023) - [c37]Bradley H. Theilman, Yipu Wang, Ojas Parekh, William Severa, J. Darby Smith, James B. Aimone:
Stochastic Neuromorphic Circuits for Solving MAXCUT. IPDPS 2023: 779-787 - [c36]Nicolas P. D. Sawaya, Daniel Marti-Dafcik, Yang Ho, Daniel P. Tabor, David Esteban Bernal Neira, Alicia B. Magann, Shavindra P. Premaratne, Pradeep Dubey, Anne Y. Matsuura, Nathan Bishop, Wibe A. de Jong, Simon Benjamin, Ojas D. Parekh, Norm M. Tubman, Katherine Klymko, Daan Camps:
HamLib: A Library of Hamiltonians for Benchmarking Quantum Algorithms and Hardware. QCE 2023: 389-390 - [c35]Yeongwoo Hwang, Joe Neeman, Ojas Parekh, Kevin Thompson, John Wright:
Unique Games hardness of Quantum Max-Cut, and a conjectured vector-valued Borell's inequality. SODA 2023: 1319-1384 - [c34]Daniel Hothem, Ojas Parekh, Kevin Thompson:
Improved Approximations for Extremal Eigenvalues of Sparse Hamiltonians. TQC 2023: 6:1-6:10 - [i20]Ojas Parekh:
Synergies Between Operations Research and Quantum Information Science. CoRR abs/2301.05554 (2023) - [i19]John Kallaugher, Ojas Parekh, Nadezhda Voronova:
Exponential Quantum Space Advantage for Approximating Maximum Directed Cut in the Streaming Model. CoRR abs/2311.14123 (2023) - [i18]John Kallaugher, Ojas Parekh, Nadezhda Voronova:
Exponential Quantum Space Advantage for Approximating Maximum Directed Cut in the Streaming Model. Electron. Colloquium Comput. Complex. TR23 (2023) - 2022
- [j20]Ojas Parekh, R. Ravi, Michael Zlatin:
On small-depth tree augmentations. Oper. Res. Lett. 50(6): 667-673 (2022) - [c33]John Kallaugher, Ojas Parekh:
The Quantum and Classical Streaming Complexity of Quantum and Classical Max-Cut. FOCS 2022: 498-506 - [c32]Jessica K. Thompson, Ojas Parekh, Kunal Marwaha:
An explicit vector algorithm for high-girth MaxCut. SOSA 2022: 238-246 - [i17]John Kallaugher, Ojas Parekh:
The Quantum and Classical Streaming Complexity of Quantum and Classical Max-Cut. CoRR abs/2206.00213 (2022) - [i16]Ojas Parekh, Kevin Thompson:
An Optimal Product-State Approximation for 2-Local Quantum Hamiltonians with Positive Terms. CoRR abs/2206.08342 (2022) - [i15]Bradley H. Theilman, Yipu Wang, Ojas D. Parekh, William Severa, J. Darby Smith, James B. Aimone:
Stochastic Neuromorphic Circuits for Solving MAXCUT. CoRR abs/2210.02588 (2022) - 2021
- [c31]Ojas Parekh, Kevin Thompson:
Beating Random Assignment for Approximating Quantum 2-Local Hamiltonian Problems. ESA 2021: 74:1-74:18 - [c30]Ojas Parekh, Kevin Thompson:
Application of the Level-2 Quantum Lasserre Hierarchy in Quantum Approximation Algorithms. ICALP 2021: 102:1-102:20 - [c29]James B. Aimone, Yang Ho, Ojas Parekh, Cynthia A. Phillips, Ali Pinar, William Severa, Yipu Wang:
Provable Advantages for Graph Algorithms in Spiking Neural Networks. SPAA 2021: 35-47 - [i14]Ojas Parekh, Kevin Thompson:
Application of the Level-$2$ Quantum Lasserre Hierarchy in Quantum Approximation Algorithms. CoRR abs/2105.05698 (2021) - [i13]J. Darby Smith, Aaron J. Hill, Leah E. Reeder, Brian C. Franke, Richard B. Lehoucq, Ojas Parekh, William Severa, James B. Aimone:
Neuromorphic scaling advantages for energy-efficient random walk computation. CoRR abs/2107.13057 (2021) - [i12]Jessica K. Thompson, Ojas Parekh, Kunal Marwaha:
An explicit vector algorithm for high-girth MaxCut. CoRR abs/2108.12477 (2021) - [i11]Ojas Parekh, R. Ravi, Michael Zlatin:
On Small-Depth Tree Augmentations. CoRR abs/2111.00148 (2021) - [i10]Yeongwoo Hwang, Joe Neeman, Ojas Parekh, Kevin Thompson, John Wright:
Unique Games hardness of Quantum Max-Cut, and a vector-valued Borell's inequality. CoRR abs/2111.01254 (2021) - 2020
- [c28]Sean Hallgren, Eunou Lee, Ojas Parekh:
An Approximation Algorithm for the MAX-2-Local Hamiltonian Problem. APPROX-RANDOM 2020: 59:1-59:18 - [c27]J. Darby Smith, William Severa, Aaron J. Hill, Leah Reeder, Brian Franke, Richard B. Lehoucq, Ojas D. Parekh, James B. Aimone:
Solving a steady-state PDE using spiking networks and neuromorphic hardware. ICONS 2020: 27:1-27:8 - [c26]James B. Aimone, Yang Ho, Ojas Parekh, Cynthia A. Phillips, Ali Pinar, William Severa, Yipu Wang:
Provable Neuromorphic Advantages for Computing Shortest Paths. SPAA 2020: 497-499 - [c25]Sándor P. Fekete, Alexander Hill, Dominik Krupke, Tyler Mayer, Joseph S. B. Mitchell, Ojas Parekh, Cynthia A. Phillips:
Probing a Set of Trajectories to Maximize Captured Information. SEA 2020: 5:1-5:14 - [i9]Sándor P. Fekete, Alexander Hill, Dominik Krupke, Tyler Mayer, Joseph S. B. Mitchell, Ojas Parekh, Cynthia A. Phillips:
Probing a Set of Trajectories to Maximize Captured Information. CoRR abs/2004.03486 (2020) - [i8]J. Darby Smith, William Severa, Aaron J. Hill, Leah Reeder, Brian Franke, Richard B. Lehoucq, Ojas D. Parekh, James B. Aimone:
Solving a steady-state PDE using spiking networks and neuromorphic hardware. CoRR abs/2005.10904 (2020) - [i7]Ojas Parekh, Cynthia A. Phillips, Conrad D. James, James B. Aimone:
Constant-Depth and Subcubic-Size Threshold Circuits for Matrix Multiplication. CoRR abs/2006.14652 (2020) - [i6]Ojas Parekh, Kevin Thompson:
Beating Random Assignment for Approximating Quantum 2-Local Hamiltonian Problems. CoRR abs/2012.12347 (2020)
2010 – 2019
- 2019
- [c24]Sevag Gharibian, Ojas Parekh:
Almost Optimal Classical Approximation Algorithms for a Quantum Generalization of Max-Cut. APPROX-RANDOM 2019: 31:1-31:17 - [c23]James B. Aimone, Ojas Parekh, Cynthia A. Phillips, Ali Pinar, William Severa, Helen Xu:
Dynamic Programming with Spiking Neural Computing. ICONS 2019: 20:1-20:9 - [i5]Sevag Gharibian, Ojas Parekh:
Almost optimal classical approximation algorithms for a quantum generalization of Max-Cut. CoRR abs/1909.08846 (2019) - 2018
- [j19]Sándor P. Fekete, Kan Huang, Joseph S. B. Mitchell, Ojas Parekh, Cynthia A. Phillips:
Geometric Hitting Set for Segments of Few Orientations. Theory Comput. Syst. 62(2): 268-303 (2018) - [j18]Stephen J. Verzi, Fredrick H. Rothganger, Ojas Parekh, Tu-Thach Quach, Nadine E. Miner, Craig M. Vineyard, Conrad D. James, James B. Aimone:
Computing with Spikes: The Advantage of Fine-Grained Timing. Neural Comput. 30(10) (2018) - [c22]William Severa, Rich Lehoucq, Ojas Parekh, James B. Aimone:
Spiking Neural Algorithms for Markov Process Random Walk. IJCNN 2018: 1-8 - [c21]Ojas Parekh, Cynthia A. Phillips, Conrad D. James, James B. Aimone:
Constant-Depth and Subcubic-Size Threshold Circuits for Matrix Multiplication. SPAA 2018: 67-76 - [i4]William Severa, Rich Lehoucq, Ojas Parekh, James B. Aimone:
Spiking Neural Algorithms for Markov Process Random Walk. CoRR abs/1805.00509 (2018) - 2017
- [j17]William Severa, Ojas Parekh, Conrad D. James, James B. Aimone:
A Combinatorial Model for Dentate Gyrus Sparse Coding. Neural Comput. 29(1): 94-117 (2017) - [j16]Bugra Çaskurlu, Vahan Mkrtchyan, Ojas Parekh, K. Subramani:
Partial Vertex Cover and Budgeted Maximum Coverage in Bipartite Graphs. SIAM J. Discret. Math. 31(3): 2172-2184 (2017) - [c20]James B. Aimone, Ojas Parekh, William Severa:
Neural computing for scientific computing applications: more than just machine learning. NCS 2017: 7:1-7:6 - [c19]Vahan Mkrtchyan, Ojas Parekh, Danny Segev, K. Subramani:
The Approximability of Partial Vertex Covers in Trees. SOFSEM 2017: 350-360 - 2016
- [c18]William Severa, Ojas Parekh, Kristofor D. Carlson, Conrad D. James, James B. Aimone:
Spiking network algorithms for scientific computing. ICRC 2016: 1-8 - [i3]Sándor P. Fekete, Kan Huang, Joseph S. B. Mitchell, Ojas Parekh, Cynthia A. Phillips:
Geometric Hitting Set for Segments of Few Orientations. CoRR abs/1603.06077 (2016) - [i2]Ojas Parekh:
Iterative Packing for Demand and Hypergraph Matching. CoRR abs/1604.00310 (2016) - [i1]Ojas Parekh, David Pritchard:
Generalized Hypergraph Matching via Iterated Packing and Local Ratio. CoRR abs/1604.00322 (2016) - 2015
- [c17]Sándor P. Fekete, Kan Huang, Joseph S. B. Mitchell, Ojas Parekh, Cynthia A. Phillips:
Geometric Hitting Set for Segments of Few Orientations. WAOA 2015: 145-157 - 2014
- [j15]Jochen Könemann, Ojas Parekh, David Pritchard:
Multicommodity Flow in Trees: Packing via Covering and Iterated Relaxation. Algorithmica 68(3): 776-804 (2014) - [c16]Randy C. Brost, William C. McLendon III, Ojas Parekh, Mark D. Rintoul, David R. Strip, Diane Myung-kyung Woodbridge:
A computational framework for ontologically storing and analyzing very large overhead image sets. BigSpatial@SIGSPATIAL 2014: 1-10 - [c15]Bugra Çaskurlu, Vahan Mkrtchyan, Ojas Parekh, K. Subramani:
On Partial Vertex Cover and Budgeted Maximum Coverage Problems in Bipartite Graphs. IFIP TCS 2014: 13-26 - [c14]Ojas Parekh, David Pritchard:
Generalized Hypergraph Matching via Iterated Packing and Local Ratio. WAOA 2014: 207-223 - 2012
- [j14]André Berger, Ojas Parekh:
Erratum to: Linear Time Algorithms for Generalized Edge Dominating Set Problems. Algorithmica 62(1-2): 633-634 (2012) - 2011
- [j13]Brian C. Dean, Adam Griffis, Ojas Parekh, Adam A. Whitley:
Approximation Algorithms for k-hurdle Problems. Algorithmica 59(1): 81-93 (2011) - [j12]Jochen Könemann, Ojas Parekh, Danny Segev:
A Unified Approach to Approximating Partial Covering Problems. Algorithmica 59(4): 489-509 (2011) - [c13]Ojas Parekh:
Iterative Packing for Demand and Hypergraph Matching. IPCO 2011: 349-361 - 2010
- [c12]James J. Lu, Sebastien Siva, Ojas Parekh, George H. L. Fletcher, Hantao Zhang:
Constraint processing in relational database systems: from theory to implementation. SAC 2010: 2066-2070
2000 – 2009
- 2009
- [j11]Robert D. Carr, Goran Konjevod, Greg Little, Venkatesh Natarajan, Ojas Parekh:
Compacting cuts: A new linear formulation for minimum cut. ACM Trans. Algorithms 5(3): 27:1-27:16 (2009) - 2008
- [j10]André Berger, Ojas Parekh:
Linear Time Algorithms for Generalized Edge Dominating Set Problems. Algorithmica 50(2): 244-254 (2008) - [j9]Ojas Parekh, Danny Segev:
Path Hitting in Acyclic Graphs. Algorithmica 52(4): 466-486 (2008) - [j8]Ojas Parekh:
Approximation algorithms for partially covering with edges. Theor. Comput. Sci. 400(1-3): 159-168 (2008) - [c11]Jochen Könemann, Ojas Parekh, David Pritchard:
Max-Weight Integral Multicommodity Flow in Spiders and High-Capacity Trees. WAOA 2008: 1-14 - 2007
- [j7]André Berger, Takuro Fukunaga, Hiroshi Nagamochi, Ojas Parekh:
Approximability of the capacitated b-edge dominating set problem. Theor. Comput. Sci. 385(1-3): 202-213 (2007) - [c10]Robert D. Carr, Goran Konjevod, Greg Little, Venkatesh Natarajan, Ojas Parekh:
Compacting cuts: a new linear formulation for minimum cut. SODA 2007: 43-52 - 2006
- [j6]Robert D. Carr, Ojas Parekh:
A 1/2-integral relaxation for the A-matching problem. Oper. Res. Lett. 34(4): 445-450 (2006) - [c9]Jochen Könemann, Ojas Parekh, Danny Segev:
A Unified Approach to Approximating Partial Covering Problems. ESA 2006: 468-479 - [c8]Ojas Parekh, Danny Segev:
Path Hitting in Acyclic Graphs. ESA 2006: 564-575 - 2005
- [c7]Bruce M. Maggs, Gary L. Miller, Ojas Parekh, R. Ravi, Shan Leung Maverick Woo:
Finding effective support-tree preconditioners. SPAA 2005: 176-185 - [c6]André Berger, Ojas Parekh:
Linear Time Algorithms for Generalized Edge Dominating Set Problems. WADS 2005: 233-243 - 2004
- [j5]Jochen Könemann, Goran Konjevod, Ojas Parekh, Amitabh Sinha:
Improved Approximations for Tour and Tree Covers. Algorithmica 38(3): 441-449 (2004) - [j4]Jochen Könemann, Yanjun Li, Ojas Parekh, Amitabh Sinha:
An approximation algorithm for the edge-dilation k-center problem, . Oper. Res. Lett. 32(5): 491-495 (2004) - 2003
- [j3]Ojas Parekh:
Forestation in Hypergraphs: Linear k-Trees. Electron. J. Comb. 10 (2003) - 2002
- [c5]Eduardo Sany Laber, Ojas Parekh, R. Ravi:
Randomized Approximation Algorithms for Query Optimization Problems on Two Processors. ESA 2002: 649-661 - [c4]Ojas Parekh:
Edge dominating and hypomatchable sets. SODA 2002: 287-291 - [c3]Jochen Könemann, Yanjun Li, Ojas Parekh, Amitabh Sinha:
Approximation Algorithms for Edge-Dilation k-Center Problems. SWAT 2002: 210-219 - 2001
- [j2]Robert D. Carr, Toshihiro Fujito, Goran Konjevod, Ojas Parekh:
A 2\frac{1}{10}-Approximation Algorithm for a Generalization of the Weighted Edge-Dominating Set Problem. J. Comb. Optim. 5(3): 317-326 (2001) - 2000
- [c2]Jochen Könemann, Goran Konjevod, Ojas Parekh, Amitabh Sinha:
Improved approximations for tour and tree covers. APPROX 2000: 184-193 - [c1]Robert D. Carr, Toshihiro Fujito, Goran Konjevod, Ojas Parekh:
A 2 1/10-Approximation Algorithm for a Generalization of the Weighted Edge-Dominating Set Problem. ESA 2000: 132-142
1990 – 1999
- 1997
- [j1]Ellen W. Zegura, Scott McFarland, Ojas Parekh:
A survey and new results in renegotiated service. J. High Speed Networks 6(3): 197-206 (1997)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-01 01:15 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint