default search action
Gopinath Chennupati
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c40]John Harvill, Rinat Khaziev, Scarlett Li, Randy Cogill, Lidan Wang, Gopinath Chennupati, Hari Thadakamalla:
Significant ASR Error Detection for Conversational Voice Assistants. ICASSP 2024: 11606-11610 - 2023
- [j10]Maksim Ekin Eren, Juston S. Moore, Erik Skau, Elisabeth Moore, Manish Bhattarai, Gopinath Chennupati, Boian S. Alexandrov:
General-purpose Unsupervised Cyber Anomaly Detection via Non-negative Tensor Factorization. DTRAP 4(1): 6:1-6:28 (2023) - [c39]Milind Rao, Gopinath Chennupati, Gautam Tiwari, Anit Kumar Sahu, Anirudh Raju, Ariya Rastrow, Jasha Droppo:
Federated Self-Learning with Weak Supervision for Speech Recognition. ICASSP 2023: 1-5 - [c38]Hamdy Abdelkhalik, Shamminuj Aktar, Yehia Arafa, Atanu Barai, Gopinath Chennupati, Nandakishore Santhi, Nishant Panda, Nirmal Prajapati, Nazmul Haque Turja, Stephan J. Eidenbenz, Abdel-Hameed A. Badawy:
BB-ML: Basic Block Performance Prediction using Machine Learning Techniques. ICPADS 2023: 1975-1982 - [c37]Aakriti Agrawal, Milind Rao, Anit Kumar Sahu, Gopinath Chennupati, Andreas Stolcke:
Learning When to Trust Which Teacher for Weakly Supervised ASR. INTERSPEECH 2023: 381-385 - [i20]Aakriti Agrawal, Milind Rao, Anit Kumar Sahu, Gopinath Chennupati, Andreas Stolcke:
Learning When to Trust Which Teacher for Weakly Supervised ASR. CoRR abs/2306.12012 (2023) - [i19]Milind Rao, Gopinath Chennupati, Gautam Tiwari, Anit Kumar Sahu, Anirudh Raju, Ariya Rastrow, Jasha Droppo:
Federated Self-Learning with Weak Supervision for Speech Recognition. CoRR abs/2306.12015 (2023) - [i18]Guruprasad V. Ramesh, Gopinath Chennupati, Milind Rao, Anit Kumar Sahu, Ariya Rastrow, Jasha Droppo:
Federated Representation Learning for Automatic Speech Recognition. CoRR abs/2308.02013 (2023) - 2022
- [j9]Nasrin Akhter, Kazi Lutful Kabir, Gopinath Chennupati, Raviteja Vangara, Boian S. Alexandrov, Hristo N. Djidjev, Amarda Shehu:
Improved Protein Decoy Selection via Non-Negative Matrix Factorization. IEEE ACM Trans. Comput. Biol. Bioinform. 19(3): 1670-1682 (2022) - [j8]Atanu Barai, Yehia Arafa, Abdel-Hameed A. Badawy, Gopinath Chennupati, Nandakishore Santhi, Stephan J. Eidenbenz:
PPT-Multicore: performance prediction of OpenMP applications using reuse profiles and analytical modeling. J. Supercomput. 78(2): 2354-2385 (2022) - [c36]Gopinath Chennupati, Milind Rao, Gurpreet Chadha, Aaron Eakin, Anirudh Raju, Gautam Tiwari, Anit Kumar Sahu, Ariya Rastrow, Jasha Droppo, Andy Oberlin, Buddha Nandanoor, Prahalad Venkataramanan, Zheng Wu, Pankaj Sitpure:
ILASR: Privacy-Preserving Incremental Learning for Automatic Speech Recognition at Production Scale. KDD 2022: 2780-2788 - [i17]Shamminuj Aktar, Hamdy Abdelkhalik, Nazmul Haque Turja, Yehia Arafa, Atanu Barai, Nishant Panda, Gopinath Chennupati, Nandakishore Santhi, Stephan J. Eidenbenz, Abdel-Hameed A. Badawy:
BB-ML: Basic Block Performance Prediction using Machine Learning Techniques. CoRR abs/2202.07798 (2022) - [i16]Gopinath Chennupati, Milind Rao, Gurpreet Chadha, Aaron Eakin, Anirudh Raju, Gautam Tiwari, Anit Kumar Sahu, Ariya Rastrow, Jasha Droppo, Andy Oberlin, Buddha Nandanoor, Prahalad Venkataramanan, Zheng Wu, Pankaj Sitpure:
ILASR: Privacy-Preserving Incremental Learning for Automatic Speech Recognition at Production Scale. CoRR abs/2207.09078 (2022) - [i15]Ganesh Tata, Gautham Krishna Gudur, Gopinath Chennupati, Mohammad Emtiyaz Khan:
Can Calibration Improve Sample Prioritization? CoRR abs/2210.06592 (2022) - 2021
- [j7]Raviteja Vangara, Manish Bhattarai, Erik Skau, Gopinath Chennupati, Hristo N. Djidjev, Thomas Tierney, James P. Smith, Valentin G. Stanev, Boian S. Alexandrov:
Finding the Number of Latent Topics With Semantic Non-Negative Matrix Factorization. IEEE Access 9: 117217-117231 (2021) - [j6]Gopinath Chennupati, Nandakishore Santhi, Phillip Romero, Stephan J. Eidenbenz:
Machine Learning-enabled Scalable Performance Prediction of Scientific Codes. ACM Trans. Model. Comput. Simul. 31(2): 11:1-11:28 (2021) - [c35]Sunil Thulasidasan, Sushil Thapa, Sayera Dhaubhadel, Gopinath Chennupati, Tanmoy Bhattacharya, Jeff A. Bilmes:
An Effective Baseline for Robustness to Distributional Shift. ICMLA 2021: 278-285 - [c34]Yehia Arafa, Abdel-Hameed A. Badawy, Ammar ElWazir, Atanu Barai, Ali Eker, Gopinath Chennupati, Nandakishore Santhi, Stephan J. Eidenbenz:
Hybrid, scalable, trace-driven performance modeling of GPGPUs. SC 2021: 53 - [i14]Atanu Barai, Gopinath Chennupati, Nandakishore Santhi, Abdel-Hameed A. Badawy, Yehia Arafa, Stephan J. Eidenbenz:
PPT-SASMM: Scalable Analytical Shared Memory Model: Predicting the Performance of Multicore Caches from a Single-Threaded Execution Trace. CoRR abs/2103.10635 (2021) - [i13]Atanu Barai, Yehia Arafa, Abdel-Hameed A. Badawy, Gopinath Chennupati, Nandakishore Santhi, Stephan J. Eidenbenz:
PPT-Multicore: Performance Prediction of OpenMP applications using Reuse Profiles and Analytical Modeling. CoRR abs/2104.05102 (2021) - [i12]Sunil Thulasidasan, Sushil Thapa, Sayera Dhaubhadel, Gopinath Chennupati, Tanmoy Bhattacharya, Jeff A. Bilmes:
An Effective Baseline for Robustness to Distributional Shift. CoRR abs/2105.07107 (2021) - 2020
- [j5]Hector Carrillo-Cabada, Erik Skau, Gopinath Chennupati, Boian S. Alexandrov, Hristo N. Djidjev:
An Out of Memory tSVD for Big-Data Factorization. IEEE Access 8: 107749-107759 (2020) - [j4]Poornima Haridas, Gopinath Chennupati, Nandakishore Santhi, Phillip Romero, Stephan J. Eidenbenz:
Code Characterization With Graph Convolutions and Capsule Networks. IEEE Access 8: 136307-136315 (2020) - [j3]Nasrin Akhter, Gopinath Chennupati, Hristo N. Djidjev, Amarda Shehu:
Decoy selection for protein structure prediction via extreme gradient boosting and ranking. BMC Bioinform. 21-S(1): 189 (2020) - [j2]Gopinath Chennupati, Raviteja Vangara, Erik Skau, Hristo N. Djidjev, Boian S. Alexandrov:
Distributed non-negative matrix factorization with determination of the number of latent features. J. Supercomput. 76(9): 7458-7488 (2020) - [c33]Kazi Lutful Kabir, Gopinath Chennupati, Raviteja Vangara, Hristo N. Djidjev, Boian S. Alexandrov, Amarda Shehu:
Decoy Selection in Protein Structure Determination via Symmetric Non-negative Matrix Factorization. BIBM 2020: 23-28 - [c32]Yehia Arafa, Ammar ElWazir, Abdelrahman Elkanishy, Youssef Aly, Ayatelrahman Elsayed, Abdel-Hameed A. Badawy, Gopinath Chennupati, Stephan J. Eidenbenz, Nandakishore Santhi:
Verified instruction-level energy consumption measurement for NVIDIA GPUs. CF 2020: 60-70 - [c31]Manish Bhattarai, Gopinath Chennupati, Erik Skau, Raviteja Vangara, Hristo N. Djidjev, Boian S. Alexandrov:
Distributed Non-Negative Tensor Train Decomposition. HPEC 2020: 1-10 - [c30]Raviteja Vangara, Erik Skau, Gopinath Chennupati, Hristo N. Djidjev, Thomas Tierney, James P. Smith, Manish Bhattarai, Valentin G. Stanev, Boian S. Alexandrov:
Semantic Nonnegative Matrix Factorization with Automatic Model Determination for Topic Modeling. ICMLA 2020: 328-335 - [c29]Yehia Arafa, Abdel-Hameed A. Badawy, Gopinath Chennupati, Atanu Barai, Nandakishore Santhi, Stephan J. Eidenbenz:
Fast, accurate, and scalable memory modeling of GPGPUs using reuse profiles. ICS 2020: 31:1-31:12 - [c28]Yehia Arafa, Ammar ElWazir, Abdelrahman Elkanishy, Youssef Aly, Ayatelrahman Elsayed, Abdel-Hameed A. Badawy, Gopinath Chennupati, Stephan J. Eidenbenz, Nandakishore Santhi:
NVIDIA GPGPUs Instructions Energy Consumption. ISPASS 2020: 110-112 - [c27]Atanu Barai, Gopinath Chennupati, Nandakishore Santhi, Abdel-Hameed A. Badawy, Yehia Arafa, Stephan J. Eidenbenz:
PPT-SASMM: Scalable Analytical Shared Memory Model: Predicting the Performance of Multicore Caches from a Single-Threaded Execution Trace. MEMSYS 2020: 341-351 - [i11]Yehia Arafa, Ammar ElWazir, Abdelrahman Elkanishy, Youssef Aly, Ayatelrahman Elsayed, Abdel-Hameed A. Badawy, Gopinath Chennupati, Stephan J. Eidenbenz, Nandakishore Santhi:
Verified Instruction-Level Energy Consumption Measurement for NVIDIA GPUs. CoRR abs/2002.07795 (2020) - [i10]Manish Bhattarai, Gopinath Chennupati, Erik Skau, Raviteja Vangara, Hristo N. Djidjev, Boian S. Alexandrov:
Distributed Non-Negative Tensor Train Decomposition. CoRR abs/2008.01340 (2020) - [i9]Sayera Dhaubhadel, Jamaludin Mohd-Yusof, Kumkum Ganguly, Gopinath Chennupati, Sunil Thulasidasan, Nicolas W. Hengartner, Brent J. Mumphrey, Eric B. Durbin, Jennifer A. Doherty, Mireille Lemieux, Noah Schaefferkoetter, Georgia D. Tourassi, Linda Coyle, Lynne Penberthy, Benjamin McMahon, Tanmoy Bhattacharya:
Why I'm not Answering: Understanding Determinants of Classification of an Abstaining Classifier for Cancer Pathology Reports. CoRR abs/2009.05094 (2020) - [i8]Nasrin Akhter, Gopinath Chennupati, Hristo N. Djidjev, Amarda Shehu:
Decoy Selection for Protein Structure Prediction Via Extreme Gradient Boosting and Ranking. CoRR abs/2010.01441 (2020) - [i7]Gopinath Chennupati, Nandakishore Santhi, Phillip Romero, Stephan J. Eidenbenz:
Machine Learning Enabled Scalable Performance Prediction of Scientific Codes. CoRR abs/2010.04212 (2020)
2010 – 2019
- 2019
- [j1]Yehia Arafa, Abdel-Hameed A. Badawy, Gopinath Chennupati, Nandakishore Santhi, Stephan J. Eidenbenz:
PPT-GPU: Scalable GPU Performance Modeling. IEEE Comput. Archit. Lett. 18: 55-58 (2019) - [c26]Yehia Arafa, Abdel-Hameed A. Badawy, Gopinath Chennupati, Nandakishore Santhi, Stephan J. Eidenbenz:
POSTER: GPUs Pipeline Latency Analysis. ASAP 2019: 139 - [c25]Nasrin Akhter, Raviteja Vangara, Gopinath Chennupati, Boian S. Alexandrov, Hristo N. Djidjev, Amarda Shehu:
Non-Negative Matrix Factorization for Selection of Near-Native Protein Tertiary Structures. BIBM 2019: 70-73 - [c24]Yehia Arafa, Abdel-Hameed A. Badawy, Gopinath Chennupati, Nandakishore Santhi, Stephan J. Eidenbenz:
Low Overhead Instruction Latency Characterization for NVIDIA GPGPUs. HPEC 2019: 1-8 - [c23]Sunil Thulasidasan, Tanmoy Bhattacharya, Jeff A. Bilmes, Gopinath Chennupati, Jamal Mohd-Yusof:
Combating Label Noise in Deep Learning using Abstention. ICML 2019: 6234-6243 - [c22]Yehia Arafa, Gopinath Chennupati, Atanu Barai, Abdel-Hameed A. Badawy, Nandakishore Santhi, Stephan J. Eidenbenz:
GPUs Cache Performance Estimation using Reuse Distance Analysis. IPCCC 2019: 1-8 - [c21]Sunil Thulasidasan, Gopinath Chennupati, Jeff A. Bilmes, Tanmoy Bhattacharya, Sarah Michalak:
On Mixup Training: Improved Calibration and Predictive Uncertainty for Deep Neural Networks. NeurIPS 2019: 13888-13899 - [c20]Gopinath Chennupati, Nandakishore Santhi, Stephan J. Eidenbenz:
Scalable Performance Prediction of Codes with Memory Hierarchy and Pipelines. SIGSIM-PADS 2019: 13-24 - [i6]Yehia Arafa, Abdel-Hameed A. Badawy, Gopinath Chennupati, Nandakishore Santhi, Stephan J. Eidenbenz:
Instructions' Latencies Characterization for NVIDIA GPGPUs. CoRR abs/1905.08778 (2019) - [i5]Sunil Thulasidasan, Tanmoy Bhattacharya, Jeff A. Bilmes, Gopinath Chennupati, Jamal Mohd-Yusof:
Combating Label Noise in Deep Learning Using Abstention. CoRR abs/1905.10964 (2019) - [i4]Sunil Thulasidasan, Gopinath Chennupati, Jeff A. Bilmes, Tanmoy Bhattacharya, Sarah Michalak:
On Mixup Training: Improved Calibration and Predictive Uncertainty for Deep Neural Networks. CoRR abs/1905.11001 (2019) - [i3]Atanu Barai, Gopinath Chennupati, Nandakishore Santhi, Abdel-Hameed A. Badawy, Stephan J. Eidenbenz:
Modeling Shared Cache Performance of OpenMP Programs using Reuse Distance. CoRR abs/1907.12666 (2019) - 2018
- [c19]Nasrin Akhter, Gopinath Chennupati, Hristo N. Djidjev, Amarda Shehu:
Improved Decoy Selection via Machine Learning and Ranking. ICCABS 2018: 1 - [c18]Yehia Arafa, Abdel-Hameed A. Badawy, Gopinath Chennupati, Nandakishore Santhi, Stephan J. Eidenbenz:
PPT-GPU: performance prediction toolkit for GPUs identifying the impact of caches: extended abstract. MEMSYS 2018: 301-302 - [c17]Mohammad Abu Obaida, Jason Liu, Gopinath Chennupati, Nandakishore Santhi, Stephan J. Eidenbenz:
Parallel Application Performance Prediction Using Analysis Based Models and HPC Simulations. SIGSIM-PADS 2018: 49-59 - [c16]Gopinath Chennupati, Stephan J. Eidenbenz, Alex Long, Olena Tkachenko, Joseph Zerr, Jason Liu:
Imcsim: Parameterized Performance Prediction for Implicit Monte Carlo codes. WSC 2018: 491-502 - [p1]Gopinath Chennupati, R. Muhammad Atif Azad, Conor Ryan, Stephan J. Eidenbenz, Nandakishore Santhi:
Synthesis of Parallel Programs on Multi-Cores. Handbook of Grammatical Evolution 2018: 289-315 - [i2]Patrick J. Coles, Stephan J. Eidenbenz, Scott Pakin, Adetokunbo Adedoyin, John Ambrosiano, Petr M. Anisimov, William Casper, Gopinath Chennupati, Carleton Coffrin, Hristo N. Djidjev, David Gunter, Satish Karra, Nathan Lemons, Shizeng Lin, Andrey Y. Lokhov, Alexander Malyzhenkov, David Dennis Lee Mascarenas, Susan M. Mniszewski, Balu Nadiga, Dan O'Malley, Diane Oyen, Lakshman Prasad, Randy Roberts, Philip Romero, Nandakishore Santhi, Nikolai Sinitsyn, Pieter Swart, Marc Vuffray, Jim Wendelberger, Boram Yoon, Richard J. Zamora, Wei Zhu:
Quantum Algorithm Implementations for Beginners. CoRR abs/1804.03719 (2018) - 2017
- [c15]Gopinath Chennupati, Nandakishore Santhi, Stephan J. Eidenbenz, Sunil Thulasidasan:
AMM: Scalable Memory Reuse Model to Predict the Performance of Physics Codes. CLUSTER 2017: 649-650 - [c14]Bhargava Kalla, Nandakishore Santhi, Abdel-Hameed A. Badawy, Gopinath Chennupati, Stephan J. Eidenbenz:
A Probabilistic Monte Carlo Framework for Branch Prediction. CLUSTER 2017: 651-652 - [c13]Bhargava Kalla, Nandakishore Santhi, Abdel-Hameed A. Badawy, Gopinath Chennupati, Stephan J. Eidenbenz:
Probabilistic Monte Carlo simulations for static branch prediction. IPCCC 2017: 1-4 - [c12]Gopinath Chennupati, Nandakishore Santhi, Robert F. Bird, Sunil Thulasidasan, Abdel-Hameed A. Badawy, Satyajayant Misra, Stephan J. Eidenbenz:
A Scalable Analytical Memory Model for CPU Performance Prediction. PMBS@SC 2017: 114-135 - [c11]Gopinath Chennupati, Nandakishore Santhi, Stephan J. Eidenbenz, Sunil Thulasidasan:
An analytical memory hierarchy model for performance prediction. WSC 2017: 908-919 - 2016
- [c10]Gopinath Chennupati, R. Muhammad Atif Azad, Conor Ryan:
Automatic lock-free parallel programming on multi-core processors. CEC 2016: 4143-4150 - 2015
- [c9]Gopinath Chennupati, R. Muhammad Atif Azad, Conor Ryan:
Automatic Evolution of Parallel Recursive Programs. EuroGP 2015: 167-178 - [c8]Gopinath Chennupati, R. Muhammad Atif Azad, Conor Ryan:
Automatic Evolution of Parallel Sorting Programs on Multi-cores. EvoApplications 2015: 706-717 - [c7]Gopinath Chennupati, R. Muhammad Atif Azad, Conor Ryan:
Performance Optimization of Multi-Core Grammatical Evolution Generated Parallel Recursive Programs. GECCO 2015: 1007-1014 - [c6]Gopinath Chennupati, R. Muhammad Atif Azad, Conor Ryan:
Synthesis of Parallel Iterative Sorts with Multi-Core Grammatical Evolution. GECCO (Companion) 2015: 1059-1066 - [c5]Gopinath Chennupati, R. Muhammad Atif Azad, Conor Ryan:
On the Automatic Generation of Efficient Parallel Iterative Sorting Algorithms. GECCO (Companion) 2015: 1369-1370 - 2014
- [c4]Gopinath Chennupati, Conor Ryan, R. Muhammad Atif Azad:
Predict the success or failure of an evolutionary algorithm run. GECCO (Companion) 2014: 131-132 - [c3]Gopinath Chennupati, R. Muhammad Atif Azad, Conor Ryan:
Multi-core GE: automatic evolution of CPU based multi-core parallel programs. GECCO (Companion) 2014: 1041-1044 - [c2]Gopinath Chennupati, R. Muhammad Atif Azad, Conor Ryan:
Predict the performance of GE with an ACO based machine learning algorithm. GECCO (Companion) 2014: 1353-1360 - [c1]Gopinath Chennupati, Jeannie Fitzgerald, Conor Ryan:
On the efficiency of Multi-core Grammatical Evolution (MCGE) evolving multi-core parallel programs. NaBIC 2014: 238-243 - [i1]Gopinath Chennupati:
eAnt-Miner : An Ensemble Ant-Miner to Improve the ACO Classification. CoRR abs/1409.2710 (2014)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-20 21:57 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint