default search action
Katharina Schratz
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j22]Yue Feng, Katharina Schratz:
Improved uniform error bounds on a Lawson-type exponential integrator for the long-time dynamics of sine-Gordon equation. Numerische Mathematik 156(4): 1455-1477 (2024) - [j21]Valeria Banica, Georg Maierhofer, Katharina Schratz:
Numerical Integration of Schrödinger Maps via the Hasimoto Transform. SIAM J. Numer. Anal. 62(1): 322-352 (2024) - [j20]Lun Ji, Alexander Ostermann, Frédéric Rousset, Katharina Schratz:
Low Regularity Full Error Estimates for the Cubic Nonlinear Schrödinger Equation. SIAM J. Numer. Anal. 62(5): 2071-2086 (2024) - [i28]Frédéric Rousset, Katharina Schratz:
Resonances as a computational tool. CoRR abs/2405.10572 (2024) - [i27]Tianyu Jin, Georg Maierhofer, Katharina Schratz, Yang Xiang:
A fast neural hybrid Newton solver adapted to implicit methods for nonlinear dynamics. CoRR abs/2407.03945 (2024) - [i26]James Rowbottom, Georg Maierhofer, Teo Deveney, Katharina Schratz, Pietro Liò, Carola-Bibiane Schönlieb, Chris J. Budd:
G-Adaptive mesh refinement - leveraging graph neural networks and differentiable finite element solvers. CoRR abs/2407.04516 (2024) - [i25]Stefano Di Giovacchino, Katharina Schratz:
Long-term error analysis of low-regularity integrators for stochastic Schrödinger equations. CoRR abs/2410.22201 (2024) - 2023
- [j19]Yue Feng, Georg Maierhofer, Katharina Schratz:
Long-time error bounds of low-regularity integrators for nonlinear Schrödinger equations. Math. Comput. 93(348): 1569-1598 (2023) - [i24]Lun Ji, Alexander Ostermann, Frédéric Rousset, Katharina Schratz:
Low regularity error estimates for the time integration of 2D NLS. CoRR abs/2301.10639 (2023) - [i23]Yue Feng, Georg Maierhofer, Katharina Schratz:
Long-time error bounds of low-regularity integrators for nonlinear Schrödinger equations. CoRR abs/2302.00383 (2023) - [i22]Yvonne Alama Bronsard, Yvain Bruned, Georg Maierhofer, Katharina Schratz:
Symmetric resonance based integrators and forest formulae. CoRR abs/2305.16737 (2023) - [i21]Lun Ji, Alexander Ostermann, Frédéric Rousset, Katharina Schratz:
Low regularity full error estimates for the cubic nonlinear Schrödinger equation. CoRR abs/2311.14366 (2023) - 2022
- [j18]Alexander Ostermann, Frédéric Rousset, Katharina Schratz:
Error estimates at low regularity of splitting schemes for NLS. Math. Comput. 91(333): 169-182 (2022) - [j17]María Cabrera Calvo, Frédéric Rousset, Katharina Schratz:
Time integrators for dispersive equations in the long wave regime. Math. Comput. 91(337): 2197-2214 (2022) - [j16]María Cabrera Calvo, Katharina Schratz:
Uniformly Accurate Low Regularity Integrators for the Klein-Gordon Equation from the Classical to NonRelativistic Limit Regime. SIAM J. Numer. Anal. 60(2): 888-912 (2022) - [j15]Buyang Li, Shu Ma, Katharina Schratz:
A Semi-implicit Exponential Low-Regularity Integrator for the Navier-Stokes Equations. SIAM J. Numer. Anal. 60(4): 2273-2292 (2022) - [i20]Yvonne Alama Bronsard, Yvain Bruned, Katharina Schratz:
Low regularity integrators via decorated trees. CoRR abs/2202.01171 (2022) - [i19]Buyang Li, Katharina Schratz, Franco Zivcovich:
A second-order low-regularity correction of Lie splitting for the semilinear Klein-Gordon equation. CoRR abs/2203.15539 (2022) - [i18]Yvonne Alama Bronsard, Yvain Bruned, Katharina Schratz:
Approximations of dispersive PDEs in the presence of low-regularity randomness. CoRR abs/2205.02156 (2022) - [i17]Georg Maierhofer, Katharina Schratz:
Bridging the gap: symplecticity and low regularity on the example of the KdV equation. CoRR abs/2205.05024 (2022) - [i16]Valeria Banica, Georg Maierhofer, Katharina Schratz:
Numerical integration of Schrödinger maps via the Hasimoto transform. CoRR abs/2211.01282 (2022) - [i15]Cao-Kha Doan, Thi-Thao-Phuong Hoang, Lili Ju, Katharina Schratz:
Low regularity integrators for semilinear parabolic equations with maximum bound principles. CoRR abs/2211.03982 (2022) - [i14]Yue Feng, Katharina Schratz:
Improved uniform error bounds on a Lawson-type exponential integrator for the long-time dynamics of sine-Gordon equation. CoRR abs/2211.09402 (2022) - 2021
- [j14]Alexander Ostermann, Frédéric Rousset, Katharina Schratz:
Error estimates of a Fourier integrator for the cubic Schrödinger equation at low regularity. Found. Comput. Math. 21(3): 725-765 (2021) - [j13]Patrick Krämer, Katharina Schratz, Xiaofei Zhao:
Splitting methods for nonlinear Dirac equations with Thirring type interaction in the nonrelativistic limit regime. J. Comput. Appl. Math. 387: 112494 (2021) - [j12]Katharina Schratz, Yan Wang, Xiaofei Zhao:
Low-regularity integrators for nonlinear Dirac equations. Math. Comput. 90(327): 189-214 (2021) - [j11]Frédéric Rousset, Katharina Schratz:
A General Framework of Low Regularity Integrators. SIAM J. Numer. Anal. 59(3): 1735-1768 (2021) - [i13]Arieh Iserles, Karolina Kropielnicka, Katharina Schratz, Marcus Webb:
Solving the linear semiclassical Schrödinger equation on the real line. CoRR abs/2102.00413 (2021) - [i12]Frédéric Rousset, Katharina Schratz:
Convergence error estimates at low regularity for time discretizations of KdV. CoRR abs/2102.11125 (2021) - [i11]María Cabrera Calvo, Katharina Schratz:
Uniformly accurate low regularity integrators for the Klein-Gordon equation from the classical to non-relativistic limit regime. CoRR abs/2104.11672 (2021) - [i10]María Cabrera Calvo, Frédéric Rousset, Katharina Schratz:
Time integrators for dispersive equations in the long wave regime. CoRR abs/2105.03731 (2021) - [i9]María Cabrera Calvo, Katharina Schratz:
Uniformly accurate splitting schemes for the Benjamin-Bona-Mahony equation with dispersive parameter. CoRR abs/2105.03732 (2021) - [i8]Buyang Li, Shu Ma, Katharina Schratz:
A semi-implicit low-regularity integrator for Navier-Stokes equations. CoRR abs/2107.13427 (2021) - [i7]Karolina Kropielnicka, Karolina Lademann, Katharina Schratz:
Effective high order integrators for linear Klein-Gordon equations in low to highly oscillatory regimes. CoRR abs/2112.08908 (2021) - 2020
- [i6]Yvain Bruned, Katharina Schratz:
Resonance based schemes for dispersive equations via decorated trees. CoRR abs/2005.01649 (2020) - [i5]Alexander Ostermann, Frédéric Rousset, Katharina Schratz:
Fourier integrator for periodic NLS: low regularity estimates via discrete Bourgain spaces. CoRR abs/2006.12785 (2020) - [i4]Frédéric Rousset, Katharina Schratz:
A general framework of low regularity integrators. CoRR abs/2010.01640 (2020) - [i3]Alexandre Poulain, Katharina Schratz:
Convergence, error analysis and longtime behavior of the Scalar Auxiliary Variable method for the nonlinear Schrödinger equation. CoRR abs/2012.13943 (2020) - [i2]Alexander Ostermann, Frédéric Rousset, Katharina Schratz:
Error estimates at low regularity of splitting schemes for NLS. CoRR abs/2012.14146 (2020)
2010 – 2019
- 2019
- [j10]Ludwig Gauckler, Jianfeng Lu, Jeremy Louis Marzuola, Frederic Rousset, Katharina Schratz:
Trigonometric integrators for quasilinear wave equations. Math. Comput. 88(316): 717-749 (2019) - [j9]Simon Baumstark, Katharina Schratz:
Uniformly Accurate Oscillatory Integrators for the Klein-Gordon-Zakharov System from Low- to High-Plasma Frequency Regimes. SIAM J. Numer. Anal. 57(1): 429-457 (2019) - [j8]Marvin Knöller, Alexander Ostermann, Katharina Schratz:
A Fourier Integrator for the Cubic Nonlinear Schrödinger Equation with Rough Initial Data. SIAM J. Numer. Anal. 57(4): 1967-1986 (2019) - [i1]Katharina Schratz, Yan Wang, Xiaofei Zhao:
Low-regularity integrators for nonlinear Dirac equations. CoRR abs/1906.09413 (2019) - 2018
- [j7]Alexander Ostermann, Katharina Schratz:
Low Regularity Exponential-Type Integrators for Semilinear Schrödinger Equations. Found. Comput. Math. 18(3): 731-755 (2018) - [j6]Simon Baumstark, Erwan Faou, Katharina Schratz:
Uniformly accurate exponential-type integrators for Klein-Gordon equations with asymptotic convergence to the classical NLS splitting. Math. Comput. 87(311): 1227-1254 (2018) - 2017
- [j5]Patrick Krämer, Katharina Schratz:
Efficient time integration of the Maxwell-Klein-Gordon equation in the non-relativistic limit regime. J. Comput. Appl. Math. 316: 247-259 (2017) - [j4]Martina Hofmanová, Katharina Schratz:
An exponential-type integrator for the KdV equation. Numerische Mathematik 136(4): 1117-1137 (2017) - 2016
- [j3]Eskil Hansen, Alexander Ostermann, Katharina Schratz:
The error structure of the Douglas-Rachford splitting method for stiff linear problems. J. Comput. Appl. Math. 303: 140-145 (2016) - 2014
- [j2]Erwan Faou, Katharina Schratz:
Asymptotic preserving schemes for the Klein-Gordon equation in the non-relativistic limit regime. Numerische Mathematik 126(3): 441-469 (2014) - 2013
- [j1]Alexander Ostermann, Katharina Schratz:
Stability of Exponential Operator Splitting Methods for Noncontractive Semigroups. SIAM J. Numer. Anal. 51(1): 191-203 (2013)
Coauthor Index
aka: Frédéric Rousset
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-01 01:12 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint