default search action
Andrzej Janusz
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c58]Aleksandar M. Rakicevic, Pavle D. Milosevic, Ivana T. Dragovic, Ana M. Poledica, Milica M. Zukanovic, Andrzej Janusz, Dominik Slezak:
Predicting Stock Trends Using Common Financial Indicators: A Summary of FedCSIS 2024 Data Science Challenge Held on KnowledgePit.ai Platform. FedCSIS 2024: 731-737 - 2023
- [j15]Andrzej Janusz, Andzelika Zalewska, Lukasz Wawrowski, Piotr Biczyk, Jan Ludziejewski, Marek Sikora, Dominik Slezak:
BrightBox - A rough set based technology for diagnosing mistakes of machine learning models. Appl. Soft Comput. 141: 110285 (2023) - [j14]Andrzej Janusz, Dominik Slezak, Sebastian Stawicki, Krzysztof Stencel:
A practical study of methods for deriving insightful attribute importance rankings using decision bireducts. Inf. Sci. 645: 119354 (2023) - [c57]Mateusz Wnuk, Jan Dziuba, Andrzej Janusz, Dominik Slezak:
IEEE BigData Cup 2023 Report: Object Recognition with Muon Tomography Using Cosmic Rays. IEEE Big Data 2023: 6084-6091 - [c56]Daniel Kaluza, Andrzej Janusz, Dominik Slezak:
Robust Assignment of Labels for Active Learning with Sparse and Noisy Annotations. ECAI 2023: 1207-1214 - [c55]Andrzej Janusz, Sebastian Stawicki:
Reducts in Rough Sets: Algorithmic Insights, Open Source Libraries and Applications (Tutorial - Extended Abstract). FedCSIS 2023: 71 - [c54]Michal Czerwinski, Marcin Michalak, Piotr Biczyk, Blazej Adamczyk, Daniel Iwanicki, Iwona Kostorz, Maksym Brzeczek, Andrzej Janusz, Marek Hermansa, Lukasz Wawrowski, Artur Kozlowski:
Cybersecurity Threat Detection in the Behavior of IoT Devices: Analysis of Data Mining Competition Results. FedCSIS 2023: 1289-1293 - [c53]Andrzej Janusz, Dominik Slezak:
Predicting Frags in Tactic Games at KnowledgePit.ai: ICME 2023 Grand Challenge Report. ICME Workshops 2023: 1-5 - [c52]Marek Grzegorowski, Andrzej Janusz, Grzegorz Sliwa, Lukasz Marcinowski, Andrzej Skowron:
Towards ML Explainability with Rough Sets, Clustering, and Dimensionality Reduction. IJCRS 2023: 371-386 - [c51]Daniel Kaluza, Andrzej Janusz, Dominik Slezak:
On Several New Dempster-Shafer-Inspired Uncertainty Measures Applicable for Active Learning. IJCRS 2023: 479-494 - [i5]Daniel Kaluza, Andrzej Janusz, Dominik Slezak:
Robust Assignment of Labels for Active Learning with Sparse and Noisy Annotations. CoRR abs/2307.14380 (2023) - [i4]Andzelika Zalewska-Küpçü, Andrzej Janusz, Dominik Slezak:
Diagnostic Explainability by BrightBox. ERCIM News 2023(134) (2023) - 2022
- [j13]Andrzej Janusz, Daniel Kaluza, Maciej Matraszek, Lukasz Grad, Maciej Swiechowski, Dominik Slezak:
Learning multimodal entity representations and their ensembles, with applications in a data-driven advisory framework for video game players. Inf. Sci. 617: 193-210 (2022) - [c50]Marek Grzegorowski, Andrzej Janusz, Jaroslaw Litwin, Lukasz Marcinowski:
Data-Driven Resilient Supply Management Supported by Demand Forecasting. ACIIDS (Companion) 2022: 122-134 - [c49]Daniel Kaluza, Andrzej Janusz, Dominik Slezak:
EVEAL - Expected Variance Estimation for Active Learning. IEEE Big Data 2022: 6222-6231 - [c48]Marcin S. Szczuka, Andrzej Janusz, Boguslaw Cyganek, Jakub Grabek, Lukasz Przebinda, Andzelika Zalewska, Andrzej Bukala, Dominik Slezak:
IEEE BigData Cup 2022 Report Privacy-preserving Matching of Encrypted Images. IEEE Big Data 2022: 6471-6480 - [c47]Andrzej Janusz, Dominik Slezak:
KnowledgePit Meets BrightBox: A Step Toward Insightful Investigation of the Results of Data Science Competitions. FedCSIS 2022: 393-398 - [c46]Andrzej Janusz, Antoni Jamiolkowski, Michal Okulewicz:
Predicting the Costs of Forwarding Contracts: Analysis of Data Mining Competition Results. FedCSIS 2022: 399-402 - [c45]Marek Grzegorowski, Andrzej Janusz, Stanislaw Lazewski, Maciej Swiechowski, Monika Jankowska:
Prescriptive Analytics for Optimization of FMCG Delivery Plans. IPMU (2) 2022: 44-53 - 2021
- [j12]Marek Grzegorowski, Eftim Zdravevski, Andrzej Janusz, Petre Lameski, Cas Apanowicz, Dominik Slezak:
Cost Optimization for Big Data Workloads Based on Dynamic Scheduling and Cluster-Size Tuning. Big Data Res. 25: 100203 (2021) - [c44]Maciej Matraszek, Andrzej Janusz, Maciej Swiechowski, Dominik Slezak:
Predicting Victories in Video Games - IEEE BigData 2021 Cup Report. IEEE BigData 2021: 5664-5671 - [i3]Mateusz Przyborowski, Mateusz Pabis, Andrzej Janusz, Dominik Slezak:
Schema matching using Gaussian mixture models with Wasserstein distance. CoRR abs/2111.14244 (2021) - 2020
- [c43]Andrzej Janusz, Guohua Hao, Daniel Kaluza, Tony Li, Robert Wojciechowski, Dominik Slezak:
Predicting Escalations in Customer Support: Analysis of Data Mining Challenge Results. IEEE BigData 2020: 5519-5526 - [c42]Andrzej Janusz, Mateusz Przyborowski, Piotr Biczyk, Dominik Slezak:
Network Device Workload Prediction: A Data Mining Challenge at Knowledge Pit. FedCSIS 2020: 77-80 - [c41]Joanna Henzel, Andrzej Janusz, Marek Sikora, Dominik Slezak:
On Positive-Correlation-Promoting Reducts. IJCRS 2020: 213-221
2010 – 2019
- 2019
- [c40]Andrzej Janusz, Daniel Kaluza, Agnieszka Chadzynska-Krasowska, Bartek Konarski, Joel Holland, Dominik Slezak:
IEEE BigData 2019 Cup: Suspicious Network Event Recognition. IEEE BigData 2019: 5881-5887 - [c39]Andrzej Janusz, Lukasz Grad, Marek Grzegorowski:
Clash Royale Challenge: How to Select Training Decks for Win-rate Prediction. FedCSIS 2019: 3-6 - 2018
- [j11]Dominik Slezak, Marek Grzegorowski, Andrzej Janusz, Michal Kozielski, Sinh Hoa Nguyen, Marek Sikora, Sebastian Stawicki, Lukasz Wróbel:
A framework for learning and embedding multi-sensor forecasting models into a decision support system: A case study of methane concentration in coal mines. Inf. Sci. 451-452: 112-133 (2018) - [c38]Mateusz Przyborowski, Tomasz Tajmajer, Lukasz Grad, Andrzej Janusz, Piotr Biczyk, Dominik Slezak:
Toward Machine Learning on Granulated Data - a Case of Compact Autoencoder-based Representations of Satellite Images. IEEE BigData 2018: 2657-2662 - [c37]Maciej Swiechowski, Tomasz Tajmajer, Andrzej Janusz:
Improving Hearthstone AI by Combining MCTS and Supervised Learning Algorithms. CIG 2018: 1-8 - [c36]Andrzej Janusz, Tomasz Tajmajer, Maciej Swiechowski, Lukasz Grad, Jacek Puczniewski, Dominik Slezak:
Toward an Intelligent HS Deck Advisor: Lessons Learned from AAIA'18 Data Mining Competition. FedCSIS 2018: 189-192 - [c35]Andrzej Janusz, Lukasz Grad, Dominik Slezak:
Utilizing Hybrid Information Sources to Learn Representations of Cards in Collectible Card Video Games. ICDM Workshops 2018: 422-429 - [c34]Andrzej Janusz, Sebastian Stawicki, Michal Drewniak, Krzysztof Ciebiera, Dominik Slezak, Krzysztof Stencel:
How to Match Jobs and Candidates - A Recruitment Support System Based on Feature Engineering and Advanced Analytics. IPMU (2) 2018: 503-514 - [c33]Andrzej Janusz, Dominik Slezak:
Investigating Similarity between Hearthstone Cards: Text Embeddings and Interchangeability Approaches. SMC 2018: 3421-3426 - [c32]Andrzej Janusz, Dominik Slezak, Sebastian Stawicki, Krzysztof Stencel:
SENSEI: An Intelligent Advisory System for the eSport Community and Casual Players. WI 2018: 754-757 - [i2]Maciej Swiechowski, Tomasz Tajmajer, Andrzej Janusz:
Improving Hearthstone AI by Combining MCTS and Supervised Learning Algorithms. CoRR abs/1808.04794 (2018) - 2017
- [j10]Andrzej Janusz, Marek Grzegorowski, Marcin Michalak, Lukasz Wróbel, Marek Sikora, Dominik Slezak:
Predicting seismic events in coal mines based on underground sensor measurements. Eng. Appl. Artif. Intell. 64: 83-94 (2017) - [j9]Sebastian Stawicki, Dominik Slezak, Andrzej Janusz, Sebastian Widz:
Decision bireducts and decision reducts - a comparison. Int. J. Approx. Reason. 84: 75-109 (2017) - [c31]Marek Grzegorowski, Andrzej Janusz, Dominik Slezak, Marcin S. Szczuka:
On the role of feature space granulation in feature selection processes. IEEE BigData 2017: 1806-1815 - [c30]Andrzej Janusz, Tomasz Tajmajer, Maciej Swiechowski:
Helping AI to Play Hearthstone: AAIA'17 Data Mining Challenge. FedCSIS 2017: 121-125 - [c29]Mathurin Aché, Andrzej Janusz, Kamil Zbikowski, Dominik Slezak, Marzena Kryszkiewicz, Henryk Rybinski, Piotr Gawrysiak:
ISMIS 2017 Data Mining Competition: Trading Based on Recommendations. ISMIS 2017: 697-707 - [c28]Dominik Slezak, Marek Grzegorowski, Andrzej Janusz, Sebastian Stawicki:
Toward Interactive Attribute Selection with Infolattices - A Position Paper. IJCRS (2) 2017: 526-539 - [i1]Andrzej Janusz, Maciej Swiechowski, Tomasz Tajmajer:
Helping AI to Play Hearthstone: AAIA'17 Data Mining Challenge. CoRR abs/1708.00730 (2017) - 2016
- [c27]Andrzej Janusz, Dominik Slezak, Marek Sikora, Lukasz Wróbel:
Predicting Dangerous Seismic Events: AAIA'16 Data Mining Challenge. FedCSIS 2016: 205-211 - [e1]Víctor Flores, Fernando A. C. Gomide, Andrzej Janusz, Claudio Meneses, Duoqian Miao, Georg Peters, Dominik Slezak, Guoyin Wang, Richard Weber, Yiyu Yao:
Rough Sets - International Joint Conference, IJCRS 2016, Santiago de Chile, Chile, October 7-11, 2016, Proceedings. Lecture Notes in Computer Science 9920, 2016, ISBN 978-3-319-47159-4 [contents] - 2015
- [c26]Andrzej Janusz, Dominik Slezak, Sebastian Stawicki, Mariusz Rosiak:
Knowledge Pit - A Data Challenge Platform. CS&P 2015: 191-195 - [c25]Michal Meina, Andrzej Janusz, Krzysztof Rykaczewski, Dominik Slezak, Bartosz Celmer, Adam Krasuski:
Tagging Firefighter Activities at the emergency scene: Summary of AAIA'15 data mining competition at knowledge pit. FedCSIS 2015: 367-373 - [c24]Andrzej Janusz, Dominik Slezak:
Computation of Approximate Reducts with Dynamically Adjusted Approximation Threshold. ISMIS 2015: 19-28 - [c23]Andrzej Janusz, Marek Sikora, Lukasz Wróbel, Sebastian Stawicki, Marek Grzegorowski, Piotr Wojtas, Dominik Slezak:
Mining Data from Coal Mines: IJCRS'15 Data Challenge. RSFDGrC 2015: 429-438 - [c22]Andrzej Janusz, Sebastian Stawicki, Marcin S. Szczuka, Dominik Slezak:
Rough Set Tools for Practical Data Exploration. RSKT 2015: 77-86 - 2014
- [j8]Andrzej Janusz, Dominik Slezak:
Rough Set Methods for Attribute Clustering and Selection. Appl. Artif. Intell. 28(3): 220-242 (2014) - [j7]Wojciech Swieboda, Adam Krasuski, Hung Son Nguyen, Andrzej Janusz:
Interactive Method for Semantic Document Indexing Based on Explicit Semantic Analysis. Fundam. Informaticae 132(3): 423-438 (2014) - [j6]Lala Septem Riza, Andrzej Janusz, Christoph Bergmeir, Chris Cornelis, Francisco Herrera, Dominik Slezak, José Manuel Benítez:
Implementing algorithms of rough set theory and fuzzy rough set theory in the R package "RoughSets". Inf. Sci. 287: 68-89 (2014) - [j5]Andrzej Janusz:
Algorithms for Similarity Relation Learning from High Dimensional Data. Trans. Rough Sets 17: 174-292 (2014) - [c21]Lukasz Sosnowski, Andrzej Pietruszka, Adam Krasuski, Andrzej Janusz:
A Resemblance Based Approach for Recognition of Risks at a Fire Ground. AMT 2014: 559-570 - [c20]Andrzej Janusz, Sebastian Stawicki, Hung Son Nguyen:
Adaptive Learning for Improving Semantic Tagging of Scientific Articles. FedCSIS 2014: 27-34 - [c19]Andrzej Janusz, Adam Krasuski, Sebastian Stawicki, Mariusz Rosiak, Dominik Slezak, Hung Son Nguyen:
Key Risk Factors for Polish State Fire Service: a Data Mining Competition at Knowledge Pit. FedCSIS 2014: 345-354 - [c18]Andrzej Janusz, Marcin S. Szczuka:
Assessment of data granulations in context of feature extraction problem. GrC 2014: 116-120 - [c17]Andrzej Janusz, Dominik Slezak:
Random Probes in Computation and Assessment of Approximate Reducts. RSEISP 2014: 53-64 - 2013
- [j4]Marcin S. Szczuka, Andrzej Janusz:
Semantic Clustering of Scientific Articles Using Explicit Semantic Analysis. Trans. Rough Sets 16: 83-102 (2013) - [c16]Adam Krasuski, Andrzej Janusz:
Semantic Tagging of Heterogeneous Data: Labeling Fire & Rescue Incidents with Threats. FedCSIS 2013: 77-82 - [c15]Andrzej Janusz, Adam Krasuski, Marcin S. Szczuka:
Improving Semantic Clustering of EWID Reports by Using Heterogeneous Data Types. RSFDGrC 2013: 304-314 - [p2]Karol Kurach, Krzysztof Pawlowski, Lukasz Romaszko, Marcin Tatjewski, Andrzej Janusz, Hung Son Nguyen:
Multi-label Classification of Biomedical Articles. Intelligent Tools for Building a Scientific Information Platform 2013: 199-214 - 2012
- [j3]Andrzej Janusz, Dominik Slezak, Hung Son Nguyen:
Unsupervised Similarity Learning from Textual Data. Fundam. Informaticae 119(3-4): 319-336 (2012) - [j2]Andrzej Janusz:
Combining multiple predictive models using genetic algorithms. Intell. Data Anal. 16(5): 763-776 (2012) - [j1]Andrzej Janusz:
Dynamic Rule-Based Similarity Model for DNA Microarray Data. Trans. Rough Sets 15: 1-25 (2012) - [c14]Karol Kurach, Krzysztof Pawlowski, Lukasz Romaszko, Marcin Tatjewski, Andrzej Janusz, Hung Son Nguyen:
An Ensemble Approach to Multi-label Classification of Textual Data. ADMA 2012: 306-317 - [c13]Andrzej Janusz, Dominik Slezak:
Utilization of Attribute Clustering Methods for Scalable Computation of Reducts from High-Dimensional Data. FedCSIS 2012: 295-302 - [c12]Andrzej Janusz, Wojciech Swieboda, Adam Krasuski, Hung Son Nguyen:
Interactive Document Indexing Method Based on Explicit Semantic Analysis. RSCTC 2012: 156-165 - [c11]Andrzej Janusz, Hung Son Nguyen, Dominik Slezak, Sebastian Stawicki, Adam Krasuski:
JRS'2012 Data Mining Competition: Topical Classification of Biomedical Research Papers. RSCTC 2012: 422-431 - [p1]Marcin S. Szczuka, Andrzej Janusz, Kamil Herba:
Semantic Clustering of Scientific Articles with Use of DBpedia Knowledge Base. Intelligent Tools for Building a Scientific Information Platform 2012: 61-76 - 2011
- [c10]Dominik Slezak, Andrzej Janusz:
Ensembles of Bireducts: Towards Robust Classification and Simple Representation. FGIT 2011: 64-77 - [c9]Andrzej Janusz, Sebastian Stawicki:
Applications of Approximate Reducts to the Feature Selection Problem. RSKT 2011: 45-50 - [c8]Marcin S. Szczuka, Andrzej Janusz, Kamil Herba:
Clustering of Rough Set Related Documents with Use of Knowledge from DBpedia. RSKT 2011: 394-403 - [c7]Dominik Slezak, Andrzej Janusz, Wojciech Swieboda, Hung Son Nguyen, Jan G. Bazan, Andrzej Skowron:
Semantic Analytics of PubMed Content. USAB 2011: 63-74 - 2010
- [c6]Andrzej Janusz:
Utilization of Dynamic Reducts to Improve Performance of the Rule-Based Similarity Model for Highly-Dimensional Data. Web Intelligence/IAT Workshops 2010: 432-435 - [c5]Andrzej Janusz:
Discovering Rules-Based Similarity in Microarray Data. IPMU 2010: 49-58 - [c4]Marcin Wojnarski, Andrzej Janusz, Hung Son Nguyen, Jan G. Bazan, Chuanjiang Luo, Ze Chen, Feng Hu, Guoyin Wang, Lihe Guan, Huan Luo:
RSCTC'2010 Discovery Challenge: Mining DNA Microarray Data for Medical Diagnosis and Treatment. RSCTC 2010: 4-19 - [c3]Andrzej Janusz:
Combining Multiple Classification or Regression Models Using Genetic Algorithms. RSCTC 2010: 130-137
2000 – 2009
- 2009
- [c2]Andrzej Janusz:
Rule-Based Similarity for Classification. Web Intelligence/IAT Workshops 2009: 449-452 - 2008
- [c1]Andrzej Janusz:
Similarity Relation in Classification Problems. RSCTC 2008: 211-222
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-05 21:39 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint