default search action
PKDD/ECML 2022: Grenoble, France - Workshops
- Irena Koprinska, Paolo Mignone, Riccardo Guidotti, Szymon Jaroszewicz, Holger Fröning, Francesco Gullo, Pedro M. Ferreira, Damian Roqueiro, Gaia Ceddia, Slawomir Nowaczyk, João Gama, Rita P. Ribeiro, Ricard Gavaldà, Elio Masciari, Zbigniew W. Ras, Ettore Ritacco, Francesca Naretto, Andreas Theissler, Przemyslaw Biecek, Wouter Verbeke, Gregor Schiele, Franz Pernkopf, Michaela Blott, Ilaria Bordino, Ivan Luciano Danesi, Giovanni Ponti, Lorenzo Severini, Annalisa Appice, Giuseppina Andresini, Ibéria Medeiros, Guilherme Graça, Lee Cooper, Naghmeh Ghazaleh, Jonas Richiardi, Diego Saldana Miranda, Konstantinos Sechidis, Arif Canakoglu, Sara Pidò, Pietro Pinoli, Albert Bifet, Sepideh Pashami:
Machine Learning and Principles and Practice of Knowledge Discovery in Databases - International Workshops of ECML PKDD 2022, Grenoble, France, September 19-23, 2022, Proceedings, Part II. Communications in Computer and Information Science 1753, Springer 2023, ISBN 978-3-031-23632-7
Workshop on Mining Data for Financial Application (MIDAS 2022)
- Syrielle Montariol, Matej Martinc, Andraz Pelicon, Senja Pollak, Boshko Koloski, Igor Loncarski, Aljosa Valentincic, Katarina Sitar Sustar, Riste Ichev, Martin Znidarsic:
Multi-task Learning for Features Extraction in Financial Annual Reports. 7-24 - Argimiro Arratia:
What to Do with Your Sentiments in Finance. 25-37 - Sergio Consoli, Marco Colagrossi, Francesco Panella, Luca Barbaglia:
On the Development of a European Tracker of Societal Issues and Economic Activities Using Alternative Data. 38-43 - Klismam Pereira, João Vinagre, Ana Nunes Alonso, Fábio Coelho, Melânia Carvalho:
Privacy-Preserving Machine Learning in Life Insurance Risk Prediction. 44-52 - Niken Prasasti Martono, Hayato Ohwada:
Financial Distress Model Prediction Using Machine Learning: A Case Study on Indonesia's Consumers Cyclical Companies. 53-61 - Stefano Piersanti:
Improve Default Prediction in Highly Unbalanced Context. 62-78 - Julian Tritscher, Daniel Schlör, Fabian Gwinner, Anna Krause, Andreas Hotho:
Towards Explainable Occupational Fraud Detection. 79-96 - Thomas Dierckx, Jesse Davis, Wim Schoutens:
Towards Data-Driven Volatility Modeling with Variational Autoencoders. 97-111 - Braulio C. Blanco Lambruschini, Mats Brorsson, Maciej Zurad:
Auto-clustering of Financial Reports Based on Formatting Style and Author's Fingerprint. 112-127 - Sravani Sasubilli, Mridula Verma:
InFi-BERT 1.0: Transformer-Based Language Model for Indian Financial Volatility Prediction. 128-138
Workshop on Machine Learning for Cybersecurity (MLCS 2022)
- Tina Yazdizadeh, Shabnam Hassani, Paula Branco:
Intrusion Detection Using Ensemble Models. 143-158 - Zahra Taghiyarrenani, Hamed Farsi:
Domain Adaptation with Maximum Margin Criterion with Application to Network Traffic Classification. 159-169 - Katarzyna Wasielewska, Dominik Soukup, Tomás Cejka, José Camacho:
Evaluation of the Limit of Detection in Network Dataset Quality Assessment with PerQoDA. 170-185 - Tommaso Zoppi, Andrea Ceccarelli, Andrea Bondavalli:
Towards a General Model for Intrusion Detection: An Exploratory Study. 186-201
Workshop on Machine Learning for Buildings Energy Management (MLBEM 2022)
- Mohamed Alami Chehboune, Jérémie Decock, Rim Kaddah, Jesse Read:
Conv-NILM-Net, a Causal and Multi-appliance Model for Energy Source Separation. 207-222 - Paul Compagnon, Aurore Lomet, Marina Reyboz, Martial Mermillod:
Domestic Hot Water Forecasting for Individual Housing with Deep Learning. 223-235
Workshop on Machine Learning for Pharma and Healthcare Applications (PharML 2022)
- Ylenia Rotalinti, Allan Tucker, Michael Lonergan, Puja Myles, Richard Branson:
Detecting Drift in Healthcare AI Models Based on Data Availability. 243-258 - Damir Zhakparov, Kathleen Moriarty, Nonhlanhla Lunjani, Marco Schmid, Carol Hlela, Michael Levin, Avumile Mankahla, SOS-ALL Consortium, Cezmi Akdis, Liam O'Mahony, Katja Baerenfaller, Damian Roqueiro:
Assessing Different Feature Selection Methods Applied to a Bulk RNA Sequencing Dataset with Regard to Biomedical Relevance. 259-274 - Linyi Zhou, Ioanna Miliou:
Predicting Drug Treatment for Hospitalized Patients with Heart Failure. 275-290 - Franco Rugolon, Maria Bampa, Panagiotis Papapetrou:
A Workflow for Generating Patient Counterfactuals in Lung Transplant Recipients. 291-306 - Keyuan Jiang, Minghao Zhu, Gordon R. Bernard:
Few-Shot Learning for Identification of COVID-19 Symptoms Using Generative Pre-trained Transformer Language Models. 307-316 - Rohan Banerjee, Avik Ghose:
A Light-Weight Deep Residual Network for Classification of Abnormal Heart Rhythms on Tiny Devices. 317-331
Workshop on Data Analysis in Life Science (DALS 2022)
- Sina Baharlouei, Meisam Razaviyayn, Elizabeth Tseng, David Tse:
I-CONVEX: Fast and Accurate de Novo Transcriptome Recovery from Long Reads. 339-363 - Cynthia Ifeyinwa Ugwu, Sofia Casarin:
Italian Debate on Measles Vaccination: How Twitter Data Highlight Communities and Polarity. 364-375
3rd Workshop and Tutorial on Streams for Predictive Maintenance (IoT-PdM 2022)
- Rita P. Ribeiro, Saulo Martiello Mastelini, Narjes Davari, Ehsan Aminian, Bruno Veloso, João Gama:
Online Anomaly Explanation: A Case Study on Predictive Maintenance. 383-399 - Narjes Davari, Bruno Veloso, Rita P. Ribeiro, João Gama:
Fault Forecasting Using Data-Driven Modeling: A Case Study for Metro do Porto Data Set. 400-409 - Emanuel Sousa Tomé, Rita P. Ribeiro, Bruno Veloso, João Gama:
An Online Data-Driven Predictive Maintenance Approach for Railway Switches. 410-422 - Amirhossein Berenji, Zahra Taghiyarrenani, Slawomir Nowaczyk:
curr2vib: Modality Embedding Translation for Broken-Rotor Bar Detection. 423-437 - Yuantao Fan, Hamid Sarmadi, Slawomir Nowaczyk:
Incorporating Physics-Based Models into Data Driven Approaches for Air Leak Detection in City Buses. 438-450 - Zahra Taghiyarrenani, Slawomir Nowaczyk, Sepideh Pashami, Mohamed-Rafik Bouguelia:
Towards Geometry-Preserving Domain Adaptation for Fault Identification. 451-460 - Samaneh Jamshidi, Slawomir Nowaczyk, Hadi Fanaee-T, Mahmoud Rahat:
A Systematic Approach for Tracking the Evolution of XAI as a Field of Research. 461-476 - Richard Palme, Pascal Welke:
Frequent Generalized Subgraph Mining via Graph Edit Distances. 477-483
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.