default search action
MLMIR@MICCAI 2020: Lima, Peru
- Farah Deeba, Patricia Johnson, Tobias Würfl, Jong Chul Ye:
Machine Learning for Medical Image Reconstruction - Third International Workshop, MLMIR 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 8, 2020, Proceedings. Lecture Notes in Computer Science 12450, Springer 2020, ISBN 978-3-030-61597-0
Deep Learning for Magnetic Resonance Imaging
- Jonathan Alush-Aben, Linor Ackerman-Schraier, Tomer Weiss, Sanketh Vedula, Ortal Senouf, Alex M. Bronstein:
3D FLAT: Feasible Learned Acquisition Trajectories for Accelerated MRI. 3-16 - Wanyu Bian, Yunmei Chen, Xiaojing Ye:
Deep Parallel MRI Reconstruction Network Without Coil Sensitivities. 17-26 - Alan Q. Wang, Adrian V. Dalca, Mert R. Sabuncu:
Neural Network-Based Reconstruction in Compressed Sensing MRI Without Fully-Sampled Training Data. 27-37 - Fasil Gadjimuradov, Thomas Benkert, Marcel Dominik Nickel, Andreas Maier:
Deep Recurrent Partial Fourier Reconstruction in Diffusion MRI. 38-47 - Juan Liu, Kevin M. Koch:
Model-Based Learning for Quantitative Susceptibility Mapping. 48-59 - Fabian Balsiger, Alain Jungo, Olivier Scheidegger, Benjamin Marty, Mauricio Reyes:
Learning Bloch Simulations for MR Fingerprinting by Invertible Neural Networks. 60-69 - Juan Liu, Kevin M. Koch:
Weakly-Supervised Learning for Single-Step Quantitative Susceptibility Mapping. 70-81 - Shuo Chen, Shanhui Sun, Xiaoqian Huang, Dinggang Shen, Qian Wang, Shu Liao:
Data-Consistency in Latent Space and Online Update Strategy to Guide GAN for Fast MRI Reconstruction. 82-90 - Jinwei Zhang, Hang Zhang, Alan Wang, Qihao Zhang, Mert R. Sabuncu, Pascal Spincemaille, Thanh D. Nguyen, Yi Wang:
Extending LOUPE for K-Space Under-Sampling Pattern Optimization in Multi-coil MRI. 91-101 - JayaChandra Raju, Balamurali Murugesan, Keerthi Ram, Mohanasankar Sivaprakasam:
AutoSyncoder: An Adversarial AutoEncoder Framework for Multimodal MRI Synthesis. 102-110
Deep Learning for General Image Reconstruction
- Sören Dittmer, Tobias Kluth, Daniel Otero Baguer, Peter Maass:
A Deep Prior Approach to Magnetic Particle Imaging. 113-122 - Yoni Kasten, Daniel Doktofsky, Ilya Kovler:
End-To-End Convolutional Neural Network for 3D Reconstruction of Knee Bones from Bi-planar X-Ray Images. 123-133 - Leila Saadatifard, Aryan Mobiny, Pavel A. Govyadinov, Hien Van Nguyen, David Mayerich:
Cellular/Vascular Reconstruction Using a Deep CNN for Semantic Image Preprocessing and Explicit Segmentation. 134-144 - Kaiyi Cao, Lei Bi, Dagan Feng, Jinman Kim:
Improving PET-CT Image Segmentation via Deep Multi-modality Data Augmentation. 145-152 - Hanwen Liang, Konstantinos N. Plataniotis, Xingyu Li:
Stain Style Transfer of Histopathology Images via Structure-Preserved Generative Learning. 153-162
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.