default search action
Cheng Zhang 0005
Person information
- affiliation: Microsoft Research Cambridge, UK
- affiliation (former): Disney Research, Pittsburgh, PA, USA
- affiliation (former): Royal Institute of Technology (KTH), Department of Robotics, Perception and Learning, Stockholm, Sweden
- not to be confused with: Cheng Zhang 0002
- not to be confused with: Cheng Zhang 0014
Other persons with the same name
- Cheng Zhang — disambiguation page
- Cheng Zhang 0001 — Fudan University, School of Management, Shanghai, China
- Cheng Zhang 0002 — KTH Royal Institute of Technology, Stockholm, Sweden (and 2 more)
- Cheng Zhang 0003 — Chinese Academy of Sciences, National Space Science Center, Beijing, China
- Cheng Zhang 0004 — Southeast University, National Mobile Communications Research Laboratory, Nanjing, China (and 1 more)
- Cheng Zhang 0006 — Purdue University Northwest, Hammond, IN, USA (and 1 more)
- Cheng Zhang 0007 — Waseda University, Department of Computer Science and Communication Engineering, Tokyo, Japan
- Cheng Zhang 0008 — Shanghai University, Department of Mathematics, China
- Cheng Zhang 0009 — China University of Geosciences, School of Automation, Wuhan, China
- Cheng Zhang 0010 — Anhui University, Hefei, China (and 1 more)
- Cheng Zhang 0011 — Georgia Institute of Technology, Atlanta, GA, USA
- Cheng Zhang 0012 — Huawei Technologies Co., Ltd., Shenzhen, China (and 2 more)
- Cheng Zhang 0013 — École centrale de Nantes, France
- Cheng Zhang 0014 — Texas A&M University, Department of Computer Science & Engineering, College Station, TX, USA (and 2 more)
- Cheng Zhang 0015 — Xi'an Jiaotong-Liverpool University, Department of Civil Engineering, Suzhou, China (and 1 more)
- Cheng Zhang 0016 — University of Massachusetts, Lowell, MA, USA
- Cheng Zhang 0017 — Peking University, Beijing, China
- Cheng Zhang 0018 — West Texas A&M University, Department of Computer Information and Decision Management, Canyon, TX, USA
- Cheng Zhang 0019 — Tianjin University, Tianjin, China
- Cheng Zhang 0020 — Huazhong University of Science and Technology, China
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j4]Tomas Geffner, Javier Antorán, Adam Foster, Wenbo Gong, Chao Ma, Emre Kiciman, Amit Sharma, Angus Lamb, Martin Kukla, Nick Pawlowski, Agrin Hilmkil, Joel Jennings, Meyer Scetbon, Miltiadis Allamanis, Cheng Zhang:
Deep End-to-end Causal Inference. Trans. Mach. Learn. Res. 2024 (2024) - [c39]Meyer Scetbon, Joel Jennings, Agrin Hilmkil, Cheng Zhang, Chao Ma:
A Fixed-Point Approach for Causal Generative Modeling. ICML 2024 - [c38]Jiaqi Zhang, Joel Jennings, Agrin Hilmkil, Nick Pawlowski, Cheng Zhang, Chao Ma:
Towards Causal Foundation Model: on Duality between Optimal Balancing and Attention. ICML 2024 - [i53]Tarun Gupta, Wenbo Gong, Chao Ma, Nick Pawlowski, Agrin Hilmkil, Meyer Scetbon, Ade Famoti, Ashley Juan Llorens, Jianfeng Gao, Stefan Bauer, Danica Kragic, Bernhard Schölkopf, Cheng Zhang:
The Essential Role of Causality in Foundation World Models for Embodied AI. CoRR abs/2402.06665 (2024) - [i52]Meyer Scetbon, Joel Jennings, Agrin Hilmkil, Cheng Zhang, Chao Ma:
FiP: a Fixed-Point Approach for Causal Generative Modeling. CoRR abs/2404.06969 (2024) - [i51]Ruibo Tu, Zineb Senane, Lele Cao, Cheng Zhang, Hedvig Kjellström, Gustav Eje Henter:
Causality for Tabular Data Synthesis: A High-Order Structure Causal Benchmark Framework. CoRR abs/2406.08311 (2024) - [i50]Divyat Mahajan, Jannes Gladrow, Agrin Hilmkil, Cheng Zhang, Meyer Scetbon:
Zero-Shot Learning of Causal Models. CoRR abs/2410.06128 (2024) - 2023
- [j3]Marcus Klasson, Hedvig Kjellström, Cheng Zhang:
Learn the Time to Learn: Replay Scheduling in Continual Learning. Trans. Mach. Learn. Res. 2023 (2023) - [c37]Wenbo Gong, Joel Jennings, Cheng Zhang, Nick Pawlowski:
Rhino: Deep Causal Temporal Relationship Learning with History-dependent Noise. ICLR 2023 - [c36]Matthew Ashman, Chao Ma, Agrin Hilmkil, Joel Jennings, Cheng Zhang:
Causal Reasoning in the Presence of Latent Confounders via Neural ADMG Learning. ICLR 2023 - [c35]Desi R. Ivanova, Joel Jennings, Tom Rainforth, Cheng Zhang, Adam Foster:
CO-BED: Information-Theoretic Contextual Optimization via Bayesian Experimental Design. ICML 2023: 14445-14464 - [c34]Yashas Annadani, Nick Pawlowski, Joel Jennings, Stefan Bauer, Cheng Zhang, Wenbo Gong:
BayesDAG: Gradient-Based Posterior Inference for Causal Discovery. NeurIPS 2023 - [e3]Mihaela van der Schaar, Cheng Zhang, Dominik Janzing:
Conference on Causal Learning and Reasoning, CLeaR 2023, 11-14 April 2023, Amazon Development Center, Tübingen, Germany, April 11-14, 2023. Proceedings of Machine Learning Research 213, PMLR 2023 [contents] - [i49]Ruibo Tu, Chao Ma, Cheng Zhang:
Causal-Discovery Performance of ChatGPT in the context of Neuropathic Pain Diagnosis. CoRR abs/2301.13819 (2023) - [i48]Desi R. Ivanova, Joel Jennings, Tom Rainforth, Cheng Zhang, Adam Foster:
CO-BED: Information-Theoretic Contextual Optimization via Bayesian Experimental Design. CoRR abs/2302.14015 (2023) - [i47]Matthew Ashman, Chao Ma, Agrin Hilmkil, Joel Jennings, Cheng Zhang:
Causal Reasoning in the Presence of Latent Confounders via Neural ADMG Learning. CoRR abs/2303.12703 (2023) - [i46]Cheng Zhang, Stefan Bauer, Paul Bennett, Jiangfeng Gao, Wenbo Gong, Agrin Hilmkil, Joel Jennings, Chao Ma, Tom Minka, Nick Pawlowski, James Vaughan:
Understanding Causality with Large Language Models: Feasibility and Opportunities. CoRR abs/2304.05524 (2023) - [i45]Yashas Annadani, Nick Pawlowski, Joel Jennings, Stefan Bauer, Cheng Zhang, Wenbo Gong:
BayesDAG: Gradient-Based Posterior Sampling for Causal Discovery. CoRR abs/2307.13917 (2023) - [i44]Jiaqi Zhang, Joel Jennings, Cheng Zhang, Chao Ma:
Towards Causal Foundation Model: on Duality between Causal Inference and Attention. CoRR abs/2310.00809 (2023) - 2022
- [c33]Ruibo Tu, Kun Zhang, Hedvig Kjellström, Cheng Zhang:
Optimal Transport for Causal Discovery. ICLR 2022 - [c32]Jooyeon Kim, Angus Lamb, Simon Woodhead, Simon Peyton Jones, Cheng Zhang, Miltiadis Allamanis:
CoRGi: Content-Rich Graph Neural Networks with Attention. KDD 2022: 773-783 - [c31]Pablo Morales-Alvarez, Wenbo Gong, Angus Lamb, Simon Woodhead, Simon Peyton Jones, Nick Pawlowski, Miltiadis Allamanis, Cheng Zhang:
Simultaneous Missing Value Imputation and Structure Learning with Groups. NeurIPS 2022 - [i43]Ruibo Tu, Kun Zhang, Hedvig Kjellström, Cheng Zhang:
Optimal transport for causal discovery. CoRR abs/2201.09366 (2022) - [i42]Tomas Geffner, Javier Antorán, Adam Foster, Wenbo Gong, Chao Ma, Emre Kiciman, Amit Sharma, Angus Lamb, Martin Kukla, Nick Pawlowski, Miltiadis Allamanis, Cheng Zhang:
Deep End-to-end Causal Inference. CoRR abs/2202.02195 (2022) - [i41]Desi R. Ivanova, Joel Jennings, Cheng Zhang, Adam Foster:
Efficient Real-world Testing of Causal Decision Making via Bayesian Experimental Design for Contextual Optimisation. CoRR abs/2207.05250 (2022) - [i40]Wenbo Gong, Digory Smith, Zichao Wang, Craig Barton, Simon Woodhead, Nick Pawlowski, Joel Jennings, Cheng Zhang:
Instructions and Guide: Causal Insights for Learning Paths in Education. CoRR abs/2208.12610 (2022) - [i39]Marcus Klasson, Hedvig Kjellström, Cheng Zhang:
Learn the Time to Learn: Replay Scheduling in Continual Learning. CoRR abs/2209.08660 (2022) - [i38]Wenbo Gong, Joel Jennings, Cheng Zhang, Nick Pawlowski:
Rhino: Deep Causal Temporal Relationship Learning With History-dependent Noise. CoRR abs/2210.14706 (2022) - 2021
- [c30]Tabish Rashid, Cheng Zhang, Kamil Ciosek:
Estimating α-Rank by Maximizing Information Gain. AAAI 2021: 5673-5681 - [c29]Zichao Wang, Sebastian Tschiatschek, Simon Woodhead, José Miguel Hernández-Lobato, Simon Peyton Jones, Richard G. Baraniuk, Cheng Zhang:
Educational Question Mining At Scale: Prediction, Analysis and Personalization. AAAI 2021: 15669-15677 - [c28]Ruqi Zhang, Yingzhen Li, Christopher De Sa, Sam Devlin, Cheng Zhang:
Meta-Learning Divergences for Variational Inference. AISTATS 2021: 4024-4032 - [c27]Hippolyt Ritter, Martin Kukla, Cheng Zhang, Yingzhen Li:
Sparse Uncertainty Representation in Deep Learning with Inducing Weights. NeurIPS 2021: 6515-6528 - [c26]Chao Ma, Cheng Zhang:
Identifiable Generative models for Missing Not at Random Data Imputation. NeurIPS 2021: 27645-27658 - [i37]Tabish Rashid, Cheng Zhang, Kamil Ciosek:
Estimating α-Rank by Maximizing Information Gain. CoRR abs/2101.09178 (2021) - [i36]Zichao Wang, Angus Lamb, Evgeny Saveliev, Pashmina Cameron, Yordan Zaykov, José Miguel Hernández-Lobato, Richard E. Turner, Richard G. Baraniuk, Craig Barton, Simon Peyton Jones, Simon Woodhead, Cheng Zhang:
Results and Insights from Diagnostic Questions: The NeurIPS 2020 Education Challenge. CoRR abs/2104.04034 (2021) - [i35]Angus Lamb, Evgeny Saveliev, Yingzhen Li, Sebastian Tschiatschek, Camilla Longden, Simon Woodhead, José Miguel Hernández-Lobato, Richard E. Turner, Pashmina Cameron, Cheng Zhang:
Contextual HyperNetworks for Novel Feature Adaptation. CoRR abs/2104.05860 (2021) - [i34]Varun Chandrasekaran, Darren Edge, Somesh Jha, Amit Sharma, Cheng Zhang, Shruti Tople:
Causally Constrained Data Synthesis for Private Data Release. CoRR abs/2105.13144 (2021) - [i33]Hippolyt Ritter, Martin Kukla, Cheng Zhang, Yingzhen Li:
Sparse Uncertainty Representation in Deep Learning with Inducing Weights. CoRR abs/2105.14594 (2021) - [i32]Amit Sharma, Vasilis Syrgkanis, Cheng Zhang, Emre Kiciman:
DoWhy: Addressing Challenges in Expressing and Validating Causal Assumptions. CoRR abs/2108.13518 (2021) - [i31]Pablo Morales-Alvarez, Angus Lamb, Simon Woodhead, Simon Peyton Jones, Miltiadis Allamanis, Cheng Zhang:
VICause: Simultaneous Missing Value Imputation and Causal Discovery with Groups. CoRR abs/2110.08223 (2021) - [i30]Chao Ma, Cheng Zhang:
Identifiable Generative Models for Missing Not at Random Data Imputation. CoRR abs/2110.14708 (2021) - 2020
- [j2]Marcus Klasson, Cheng Zhang, Hedvig Kjellström:
Using Variational Multi-view Learning for Classification of Grocery Items. Patterns 1(8): 100143 (2020) - [c25]Jacob Beck, Kamil Ciosek, Sam Devlin, Sebastian Tschiatschek, Cheng Zhang, Katja Hofmann:
AMRL: Aggregated Memory For Reinforcement Learning. ICLR 2020 - [c24]Zichao Wang, Angus Lamb, Evgeny Saveliev, Pashmina Cameron, Yordan Zaykov, José Miguel Hernández-Lobato, Richard E. Turner, Richard G. Baraniuk, Craig Barton, Simon Peyton Jones, Simon Woodhead, Cheng Zhang:
Results and Insights from Diagnostic Questions: The NeurIPS 2020 Education Challenge. NeurIPS (Competition and Demos) 2020: 191-205 - [c23]Cheng Zhang, Kun Zhang, Yingzhen Li:
A Causal View on Robustness of Neural Networks. NeurIPS 2020 - [c22]James Jordon, Daniel Jarrett, Evgeny Saveliev, Jinsung Yoon, Paul W. G. Elbers, Patrick Thoral, Ari Ercole, Cheng Zhang, Danielle Belgrave, Mihaela van der Schaar:
Hide-and-Seek Privacy Challenge: Synthetic Data Generation vs. Patient Re-identification. NeurIPS (Competition and Demos) 2020: 206-215 - [c21]Chao Ma, Sebastian Tschiatschek, Richard E. Turner, José Miguel Hernández-Lobato, Cheng Zhang:
VAEM: a Deep Generative Model for Heterogeneous Mixed Type Data. NeurIPS 2020 - [c20]Xueru Zhang, Ruibo Tu, Yang Liu, Mingyan Liu, Hedvig Kjellström, Kun Zhang, Cheng Zhang:
How do fair decisions fare in long-term qualification? NeurIPS 2020 - [e2]Cheng Zhang, Francisco J. R. Ruiz, Thang D. Bui, Adji Bousso Dieng, Dawen Liang:
Symposium on Advances in Approximate Bayesian Inference, AABI 2019, Vancouver, BC, Canada, December 8, 2019. Proceedings of Machine Learning Research 118, PMLR 2020 [contents] - [i29]Zichao Wang, Sebastian Tschiatschek, Simon Woodhead, José Miguel Hernández-Lobato, Simon Peyton Jones, Cheng Zhang:
Large-Scale Educational Question Analysis with Partial Variational Auto-encoders. CoRR abs/2003.05980 (2020) - [i28]Cheng Zhang, Kun Zhang, Yingzhen Li:
A Causal View on Robustness of Neural Networks. CoRR abs/2005.01095 (2020) - [i27]Chao Ma, Sebastian Tschiatschek, José Miguel Hernández-Lobato, Richard E. Turner, Cheng Zhang:
VAEM: a Deep Generative Model for Heterogeneous Mixed Type Data. CoRR abs/2006.11941 (2020) - [i26]Ruqi Zhang, Yingzhen Li, Christopher De Sa, Sam Devlin, Cheng Zhang:
Meta-Learning for Variational Inference. CoRR abs/2007.02912 (2020) - [i25]Luke Harries, Rebekah Storan Clarke, Timothy Chapman, Swamy V. P. L. N. Nallamalli, Levent Özgür, Shuktika Jain, Alex Leung, Steve Lim, Aaron Dietrich, José Miguel Hernández-Lobato, Tom Ellis, Cheng Zhang, Kamil Ciosek:
DRIFT: Deep Reinforcement Learning for Functional Software Testing. CoRR abs/2007.08220 (2020) - [i24]Zichao Wang, Angus Lamb, Evgeny Saveliev, Pashmina Cameron, Yordan Zaykov, José Miguel Hernández-Lobato, Richard E. Turner, Richard G. Baraniuk, Craig Barton, Simon Peyton Jones, Simon Woodhead, Cheng Zhang:
Diagnostic Questions: The NeurIPS 2020 Education Challenge. CoRR abs/2007.12061 (2020) - [i23]James Jordon, Daniel Jarrett, Jinsung Yoon, Tavian Barnes, Paul W. G. Elbers, Patrick Thoral, Ari Ercole, Cheng Zhang, Danielle Belgrave, Mihaela van der Schaar:
Hide-and-Seek Privacy Challenge. CoRR abs/2007.12087 (2020) - [i22]Xueru Zhang, Ruibo Tu, Yang Liu, Mingyan Liu, Hedvig Kjellström, Kun Zhang, Cheng Zhang:
How Do Fair Decisions Fare in Long-term Qualification? CoRR abs/2010.11300 (2020) - [i21]Philip J. Ball, Yingzhen Li, Angus Lamb, Cheng Zhang:
A Study on Efficiency in Continual Learning Inspired by Human Learning. CoRR abs/2010.15187 (2020) - [i20]Haiyan Yin, Yingzhen Li, Sinno Jialin Pan, Cheng Zhang, Sebastian Tschiatschek:
Reinforcement Learning with Efficient Active Feature Acquisition. CoRR abs/2011.00825 (2020)
2010 – 2019
- 2019
- [j1]Cheng Zhang, Judith Bütepage, Hedvig Kjellström, Stephan Mandt:
Advances in Variational Inference. IEEE Trans. Pattern Anal. Mach. Intell. 41(8): 2008-2026 (2019) - [c19]Cheng Zhang, Cengiz Öztireli, Stephan Mandt, Giampiero Salvi:
Active Mini-Batch Sampling Using Repulsive Point Processes. AAAI 2019: 5741-5748 - [c18]Chao Ma, Sebastian Tschiatschek, Yingzhen Li, Richard E. Turner, José Miguel Hernández-Lobato, Cheng Zhang:
HM-VAEs: a Deep Generative Model for Real-valued Data with Heterogeneous Marginals. AABI 2019: 1-8 - [c17]Ruibo Tu, Cheng Zhang, Paul Ackermann, Karthika Mohan, Hedvig Kjellström, Kun Zhang:
Causal Discovery in the Presence of Missing Data. AISTATS 2019: 1762-1770 - [c16]Chao Ma, Sebastian Tschiatschek, Konstantina Palla, José Miguel Hernández-Lobato, Sebastian Nowozin, Cheng Zhang:
EDDI: Efficient Dynamic Discovery of High-Value Information with Partial VAE. ICML 2019: 4234-4243 - [c15]Charles Hamesse, Ruibo Tu, Paul Ackermann, Hedvig Kjellström, Cheng Zhang:
Simultaneous Measurement Imputation and Outcome Prediction for Achilles Tendon Rupture Rehabilitation. MLHC 2019: 614-640 - [c14]Ruibo Tu, Kun Zhang, Bo C. Bertilson, Hedvig Kjellström, Cheng Zhang:
Neuropathic Pain Diagnosis Simulator for Causal Discovery Algorithm Evaluation. NeurIPS 2019: 12773-12784 - [c13]Maximilian Igl, Kamil Ciosek, Yingzhen Li, Sebastian Tschiatschek, Cheng Zhang, Sam Devlin, Katja Hofmann:
Generalization in Reinforcement Learning with Selective Noise Injection and Information Bottleneck. NeurIPS 2019: 13956-13968 - [c12]Wenbo Gong, Sebastian Tschiatschek, Sebastian Nowozin, Richard E. Turner, José Miguel Hernández-Lobato, Cheng Zhang:
Icebreaker: Element-wise Efficient Information Acquisition with a Bayesian Deep Latent Gaussian Model. NeurIPS 2019: 14791-14802 - [c11]Marcus Klasson, Cheng Zhang, Hedvig Kjellström:
A Hierarchical Grocery Store Image Dataset With Visual and Semantic Labels. WACV 2019: 491-500 - [e1]Francisco J. R. Ruiz, Cheng Zhang, Dawen Liang, Thang D. Bui:
Symposium on Advances in Approximate Bayesian Inference, AABI 2018, Montréal, QC, Canada, December 2, 2018. Proceedings of Machine Learning Research 96, PMLR 2019 [contents] - [i19]Marcus Klasson, Cheng Zhang, Hedvig Kjellström:
A Hierarchical Grocery Store Image Dataset with Visual and Semantic Labels. CoRR abs/1901.00711 (2019) - [i18]Anna-Lena Popkes, Hiske Overweg, Ari Ercole, Yingzhen Li, José Miguel Hernández-Lobato, Yordan Zaykov, Cheng Zhang:
Interpretable Outcome Prediction with Sparse Bayesian Neural Networks in Intensive Care. CoRR abs/1905.02599 (2019) - [i17]Ruibo Tu, Kun Zhang, Bo Christer Bertilson, Hedvig Kjellström, Cheng Zhang:
Neuropathic Pain Diagnosis Simulator for Causal Discovery Algorithm Evaluation. CoRR abs/1906.01732 (2019) - [i16]Wenbo Gong, Sebastian Tschiatschek, Richard E. Turner, Sebastian Nowozin, José Miguel Hernández-Lobato, Cheng Zhang:
Icebreaker: Element-wise Active Information Acquisition with Bayesian Deep Latent Gaussian Model. CoRR abs/1908.04537 (2019) - [i15]Robert Bamler, Cheng Zhang, Manfred Opper, Stephan Mandt:
Tightening Bounds for Variational Inference by Revisiting Perturbation Theory. CoRR abs/1910.00069 (2019) - [i14]Maximilian Igl, Kamil Ciosek, Yingzhen Li, Sebastian Tschiatschek, Cheng Zhang, Sam Devlin, Katja Hofmann:
Generalization in Reinforcement Learning with Selective Noise Injection and Information Bottleneck. CoRR abs/1910.12911 (2019) - 2018
- [c10]Tianfan Fu, Cheng Zhang, Stephan Mandt:
Continuous Word Embedding Fusion via Spectral Decomposition. CoNLL 2018: 11-20 - [c9]Charles Hamesse, Hedvig Kjellström, Paul Ackermann, Cheng Zhang:
Simultaneous measurement imputation and outcome prediction for Achilles tendon rupture rehabilitation. AIH@IJCAI 2018: 82-86 - [i13]Cheng Zhang, Cengiz Öztireli, Stephan Mandt, Giampiero Salvi:
Active Mini-Batch Sampling using Repulsive Point Processes. CoRR abs/1804.02772 (2018) - [i12]Ruibo Tu, Cheng Zhang, Paul Ackermann, Hedvig Kjellström, Kun Zhang:
Causal discovery in the presence of missing data. CoRR abs/1807.04010 (2018) - [i11]Chao Ma, Sebastian Tschiatschek, Konstantina Palla, José Miguel Hernández-Lobato, Sebastian Nowozin, Cheng Zhang:
EDDI: Efficient Dynamic Discovery of High-Value Information with Partial VAE. CoRR abs/1809.11142 (2018) - [i10]Charles Hamesse, Ruibo Tu, Paul Ackermann, Hedvig Kjellström, Cheng Zhang:
Simultaneous Measurement Imputation and Outcome Prediction for Achilles Tendon Rupture Rehabilitation. CoRR abs/1810.03435 (2018) - 2017
- [c8]Robert Bamler, Cheng Zhang, Manfred Opper, Stephan Mandt:
Perturbative Black Box Variational Inference. NIPS 2017: 5079-5088 - [c7]Cheng Zhang, Hedvig Kjellström, Stephan Mandt:
Balanced Mini-batch Sampling for SGD Using Determinantal Point Processes. UAI 2017 - [i9]Cheng Zhang, Hedvig Kjellström, Stephan Mandt:
Stochastic Learning on Imbalanced Data: Determinantal Point Processes for Mini-batch Diversification. CoRR abs/1705.00607 (2017) - [i8]Robert Bamler, Cheng Zhang, Manfred Opper, Stephan Mandt:
Perturbative Black Box Variational Inference. CoRR abs/1709.07433 (2017) - [i7]Cheng Zhang, Judith Bütepage, Hedvig Kjellström, Stephan Mandt:
Advances in Variational Inference. CoRR abs/1711.05597 (2017) - [i6]Marcus Klasson, Kun Zhang, Bo C. Bertilson, Cheng Zhang, Hedvig Kjellström:
Causality Refined Diagnostic Prediction. CoRR abs/1711.10915 (2017) - 2016
- [b1]Cheng Zhang:
Structured Representation Using Latent Variable Models. Royal Institute of Technology, Stockholm, Sweden, 2016 - [c6]Cheng Zhang, Hedvig Kjellström, Carl Henrik Ek:
Inter-battery Topic Representation Learning. ECCV (8) 2016: 210-226 - [c5]Cheng Zhang, Hedvig Kjellström, Carl Henrik Ek, Bo C. Bertilson:
Diagnostic Prediction Using Discomfort Drawings with IBTM. MLHC 2016: 226-238 - [i5]Cheng Zhang, Hedvig Kjellström, Carl Henrik Ek:
Inter-Battery Topic Representation Learning. CoRR abs/1605.06155 (2016) - [i4]Cheng Zhang, Hedvig Kjellström, Carl Henrik Ek, Bo C. Bertilson:
Diagnostic Prediction Using Discomfort Drawings with IBTM. CoRR abs/1607.08206 (2016) - [i3]Cheng Zhang, Hedvig Kjellström, Bo C. Bertilson:
Diagnostic Prediction Using Discomfort Drawings. CoRR abs/1612.01356 (2016) - [i2]An Qu, Cheng Zhang, Paul Ackermann, Hedvig Kjellström:
Bridging Medical Data Inference to Achilles Tendon Rupture Rehabilitation. CoRR abs/1612.02490 (2016) - 2014
- [c4]Cheng Zhang, Hedvig Kjellström:
How to Supervise Topic Models. ECCV Workshops (2) 2014: 500-515 - 2013
- [c3]Cheng Zhang, Carl Henrik Ek, Xavi Gratal, Florian T. Pokorny, Hedvig Kjellström:
Supervised Hierarchical Dirichlet Processes with Variational Inference. ICCV Workshops 2013: 254-261 - [c2]Cheng Zhang, Dan Song, Hedvig Kjellström:
Contextual modeling with labeled multi-LDA. IROS 2013: 2264-2271 - [c1]Cheng Zhang, Carl Henrik Ek, Hedvig Kjellström:
Factorized Topic Models. ICLR (Workshop Poster) 2013 - [i1]Cheng Zhang, Hedvig Kjellström:
Multi-Class Detection and Segmentation of Objects in Depth. CoRR abs/1301.5582 (2013)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-23 19:31 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint