default search action
Daniel Tarlow
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c52]Manushree Vijayvergiya, Malgorzata Salawa, Ivan Budiselic, Dan Zheng, Pascal Lamblin, Marko Ivankovic, Juanjo Carin, Mateusz Lewko, Jovan Andonov, Goran Petrovic, Daniel Tarlow, Petros Maniatis, René Just:
AI-Assisted Assessment of Coding Practices in Modern Code Review. AIware 2024 - [c51]Daniel D. Johnson, Daniel Tarlow, David Duvenaud, Chris J. Maddison:
Experts Don't Cheat: Learning What You Don't Know By Predicting Pairs. ICML 2024 - [c50]Alexander Frömmgen, Jacob Austin, Peter Choy, Nimesh Ghelani, Lera Kharatyan, Gabriela Surita, Elena Khrapko, Pascal Lamblin, Pierre-Antoine Manzagol, Marcus Revaj, Maxim Tabachnyk, Daniel Tarlow, Kevin Villela, Daniel Zheng, Satish Chandra, Petros Maniatis:
Resolving Code Review Comments with Machine Learning. ICSE-SEIP 2024: 204-215 - [i36]Daniel D. Johnson, Daniel Tarlow, David Duvenaud, Chris J. Maddison:
Experts Don't Cheat: Learning What You Don't Know By Predicting Pairs. CoRR abs/2402.08733 (2024) - [i35]Manushree Vijayvergiya, Malgorzata Salawa, Ivan Budiselic, Dan Zheng, Pascal Lamblin, Marko Ivankovic, Juanjo Carin, Mateusz Lewko, Jovan Andonov, Goran Petrovic, Daniel Tarlow, Petros Maniatis, René Just:
AI-Assisted Assessment of Coding Practices in Modern Code Review. CoRR abs/2405.13565 (2024) - 2023
- [c49]David Bieber, Rishab Goel, Daniel Zheng, Hugo Larochelle, Daniel Tarlow:
Static Prediction of Runtime Errors by Learning to Execute Programs with External Resource Descriptions. ICLR 2023 - [c48]Daniel D. Johnson, Daniel Tarlow, Christian Walder:
R-U-SURE? Uncertainty-Aware Code Suggestions By Maximizing Utility Across Random User Intents. ICML 2023: 15262-15306 - [c47]Disha Shrivastava, Hugo Larochelle, Daniel Tarlow:
Repository-Level Prompt Generation for Large Language Models of Code. ICML 2023: 31693-31715 - [i34]Daniel D. Johnson, Daniel Tarlow, Christian Walder:
R-U-SURE? Uncertainty-Aware Code Suggestions By Maximizing Utility Across Random User Intents. CoRR abs/2303.00732 (2023) - 2022
- [i33]David Bieber, Rishab Goel, Daniel Zheng, Hugo Larochelle, Daniel Tarlow:
Static Prediction of Runtime Errors by Learning to Execute Programs with External Resource Descriptions. CoRR abs/2203.03771 (2022) - [i32]Disha Shrivastava, Hugo Larochelle, Daniel Tarlow:
Repository-Level Prompt Generation for Large Language Models of Code. CoRR abs/2206.12839 (2022) - [i31]Binghong Chen, Daniel Tarlow, Kevin Swersky, Martin Maas, Pablo Ariel Heiber, Ashish Naik, Milad Hashemi, Parthasarathy Ranganathan:
Learning to Improve Code Efficiency. CoRR abs/2208.05297 (2022) - [i30]David Bieber, Kensen Shi, Petros Maniatis, Charles Sutton, Vincent J. Hellendoorn, Daniel D. Johnson, Daniel Tarlow:
A Library for Representing Python Programs as Graphs for Machine Learning. CoRR abs/2208.07461 (2022) - 2021
- [c46]Disha Shrivastava, Hugo Larochelle, Daniel Tarlow:
Learning to Combine Per-Example Solutions for Neural Program Synthesis. NeurIPS 2021: 6102-6114 - [c45]Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, Rianne van den Berg:
Structured Denoising Diffusion Models in Discrete State-Spaces. NeurIPS 2021: 17981-17993 - [c44]Zimin Chen, Vincent J. Hellendoorn, Pascal Lamblin, Petros Maniatis, Pierre-Antoine Manzagol, Daniel Tarlow, Subhodeep Moitra:
PLUR: A Unifying, Graph-Based View of Program Learning, Understanding, and Repair. NeurIPS 2021: 23089-23101 - [c43]Guy Lorberbom, Daniel D. Johnson, Chris J. Maddison, Daniel Tarlow, Tamir Hazan:
Learning Generalized Gumbel-max Causal Mechanisms. NeurIPS 2021: 26792-26803 - [i29]Xuechen Li, Chris J. Maddison, Daniel Tarlow:
Learning to Extend Program Graphs to Work-in-Progress Code. CoRR abs/2105.14038 (2021) - [i28]Disha Shrivastava, Hugo Larochelle, Daniel Tarlow:
Learning to Combine Per-Example Solutions for Neural Program Synthesis. CoRR abs/2106.07175 (2021) - [i27]Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, Rianne van den Berg:
Structured Denoising Diffusion Models in Discrete State-Spaces. CoRR abs/2107.03006 (2021) - [i26]Daniel D. Johnson, Jacob Austin, Rianne van den Berg, Daniel Tarlow:
Beyond In-Place Corruption: Insertion and Deletion In Denoising Probabilistic Models. CoRR abs/2107.07675 (2021) - [i25]Guy Lorberbom, Daniel D. Johnson, Chris J. Maddison, Daniel Tarlow, Tamir Hazan:
Learning Generalized Gumbel-max Causal Mechanisms. CoRR abs/2111.06888 (2021) - 2020
- [c42]Zhan Shi, Kevin Swersky, Daniel Tarlow, Parthasarathy Ranganathan, Milad Hashemi:
Learning Execution through Neural Code fusion. ICLR 2020 - [c41]Daniel Tarlow, Subhodeep Moitra, Andrew Rice, Zimin Chen, Pierre-Antoine Manzagol, Charles Sutton, Edward Aftandilian:
Learning to Fix Build Errors with Graph2Diff Neural Networks. ICSE (Workshops) 2020: 19-20 - [c40]Daniel D. Johnson, Hugo Larochelle, Daniel Tarlow:
Learning Graph Structure With A Finite-State Automaton Layer. NeurIPS 2020 - [c39]David Bieber, Charles Sutton, Hugo Larochelle, Daniel Tarlow:
Learning to Execute Programs with Instruction Pointer Attention Graph Neural Networks. NeurIPS 2020 - [c38]Guy Lorberbom, Chris J. Maddison, Nicolas Heess, Tamir Hazan, Daniel Tarlow:
Direct Policy Gradients: Direct Optimization of Policies in Discrete Action Spaces. NeurIPS 2020 - [c37]Max B. Paulus, Dami Choi, Daniel Tarlow, Andreas Krause, Chris J. Maddison:
Gradient Estimation with Stochastic Softmax Tricks. NeurIPS 2020 - [i24]Max B. Paulus, Dami Choi, Daniel Tarlow, Andreas Krause, Chris J. Maddison:
Gradient Estimation with Stochastic Softmax Tricks. CoRR abs/2006.08063 (2020) - [i23]Kian Ahrabian, Daniel Tarlow, Hehuimin Cheng, Jin L. C. Guo:
Software Engineering Event Modeling using Relative Time in Temporal Knowledge Graphs. CoRR abs/2007.01231 (2020) - [i22]Daniel D. Johnson, Hugo Larochelle, Daniel Tarlow:
Learning Graph Structure With A Finite-State Automaton Layer. CoRR abs/2007.04929 (2020) - [i21]David Bieber, Charles Sutton, Hugo Larochelle, Daniel Tarlow:
Learning to Execute Programs with Instruction Pointer Attention Graph Neural Networks. CoRR abs/2010.12621 (2020)
2010 – 2019
- 2019
- [i20]Rui Zhao, David Bieber, Kevin Swersky, Daniel Tarlow:
Neural Networks for Modeling Source Code Edits. CoRR abs/1904.02818 (2019) - [i19]Guy Lorberbom, Chris J. Maddison, Nicolas Heess, Tamir Hazan, Daniel Tarlow:
Direct Policy Gradients: Direct Optimization of Policies in Discrete Action Spaces. CoRR abs/1906.06062 (2019) - [i18]Zhan Shi, Kevin Swersky, Daniel Tarlow, Parthasarathy Ranganathan, Milad Hashemi:
Learning Execution through Neural Code Fusion. CoRR abs/1906.07181 (2019) - [i17]Matej Balog, Bart van Merriënboer, Subhodeep Moitra, Yujia Li, Daniel Tarlow:
Fast Training of Sparse Graph Neural Networks on Dense Hardware. CoRR abs/1906.11786 (2019) - [i16]Daniel Tarlow, Subhodeep Moitra, Andrew Rice, Zimin Chen, Pierre-Antoine Manzagol, Charles Sutton, Edward Aftandilian:
Learning to Fix Build Errors with Graph2Diff Neural Networks. CoRR abs/1911.01205 (2019) - 2018
- [c36]Renjie Liao, Marc Brockschmidt, Daniel Tarlow, Alexander L. Gaunt, Raquel Urtasun, Richard S. Zemel:
Graph Partition Neural Networks for Semi-Supervised Classification. ICLR (Workshop) 2018 - [i15]Renjie Liao, Marc Brockschmidt, Daniel Tarlow, Alexander L. Gaunt, Raquel Urtasun, Richard S. Zemel:
Graph Partition Neural Networks for Semi-Supervised Classification. CoRR abs/1803.06272 (2018) - 2017
- [j2]Vittal Premachandran, Daniel Tarlow, Alan L. Yuille, Dhruv Batra:
Empirical Minimum Bayes Risk Prediction. IEEE Trans. Pattern Anal. Mach. Intell. 39(1): 75-86 (2017) - [c35]Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian Nowozin, Daniel Tarlow:
DeepCoder: Learning to Write Programs. ICLR (Poster) 2017 - [c34]John K. Feser, Marc Brockschmidt, Alexander L. Gaunt, Daniel Tarlow:
Neural Functional Programming. ICLR (Workshop) 2017 - [c33]Alexander L. Gaunt, Marc Brockschmidt, Nate Kushman, Daniel Tarlow:
Lifelong Perceptual Programming By Example. ICLR (Workshop) 2017 - [c32]Kirthevasan Kandasamy, Yoram Bachrach, Ryota Tomioka, Daniel Tarlow, David Carter:
Batch Policy Gradient Methods for Improving Neural Conversation Models. ICLR (Poster) 2017 - [c31]Chengtao Li, Daniel Tarlow, Alexander L. Gaunt, Marc Brockschmidt, Nate Kushman:
Neural Program Lattices. ICLR (Poster) 2017 - [c30]Alexander L. Gaunt, Marc Brockschmidt, Nate Kushman, Daniel Tarlow:
Differentiable Programs with Neural Libraries. ICML 2017: 1213-1222 - [c29]Marc Brockschmidt, Yuxin Chen, Pushmeet Kohli, Siddharth Krishna, Daniel Tarlow:
Learning Shape Analysis. SAS 2017: 66-87 - [i14]Kirthevasan Kandasamy, Yoram Bachrach, Ryota Tomioka, Daniel Tarlow, David Carter:
Batch Policy Gradient Methods for Improving Neural Conversation Models. CoRR abs/1702.03334 (2017) - [i13]Alex Gaunt, Matthew Johnson, Maik Riechert, Daniel Tarlow, Ryota Tomioka, Dimitrios Vytiniotis, Sam Webster:
AMPNet: Asynchronous Model-Parallel Training for Dynamic Neural Networks. CoRR abs/1705.09786 (2017) - 2016
- [c28]David Joseph Tan, Thomas J. Cashman, Jonathan Taylor, Andrew W. Fitzgibbon, Daniel Tarlow, Sameh Khamis, Shahram Izadi, Jamie Shotton:
Fits Like a Glove: Rapid and Reliable Hand Shape Personalization. CVPR 2016: 5610-5619 - [c27]Yujia Li, Daniel Tarlow, Marc Brockschmidt, Richard S. Zemel:
Gated Graph Sequence Neural Networks. ICLR (Poster) 2016 - [i12]Alexander L. Gaunt, Marc Brockschmidt, Rishabh Singh, Nate Kushman, Pushmeet Kohli, Jonathan Taylor, Daniel Tarlow:
TerpreT: A Probabilistic Programming Language for Program Induction. CoRR abs/1608.04428 (2016) - [i11]John K. Feser, Marc Brockschmidt, Alexander L. Gaunt, Daniel Tarlow:
Neural Functional Programming. CoRR abs/1611.01988 (2016) - [i10]Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian Nowozin, Daniel Tarlow:
DeepCoder: Learning to Write Programs. CoRR abs/1611.01989 (2016) - [i9]Alexander L. Gaunt, Marc Brockschmidt, Nate Kushman, Daniel Tarlow:
Lifelong Perceptual Programming By Example. CoRR abs/1611.02109 (2016) - [i8]Alexander L. Gaunt, Marc Brockschmidt, Rishabh Singh, Nate Kushman, Pushmeet Kohli, Jonathan Taylor, Daniel Tarlow:
Summary - TerpreT: A Probabilistic Programming Language for Program Induction. CoRR abs/1612.00817 (2016) - 2015
- [c26]Varun Jampani, S. M. Ali Eslami, Daniel Tarlow, Pushmeet Kohli, John M. Winn:
Consensus Message Passing for Layered Graphical Models. AISTATS 2015 - [c25]Andrew D. Gordon, Claudio V. Russo, Marcin Szymczak, Johannes Borgström, Nicolas Rolland, Thore Graepel, Daniel Tarlow:
Probabilistic Programs as Spreadsheet Queries. ESOP 2015: 1-25 - [c24]Faruk Ahmed, Daniel Tarlow, Dhruv Batra:
Optimizing Expected Intersection-Over-Union with Candidate-Constrained CRFs. ICCV 2015: 1850-1858 - [c23]Miltiadis Allamanis, Daniel Tarlow, Andrew D. Gordon, Yi Wei:
Bimodal Modelling of Source Code and Natural Language. ICML 2015: 2123-2132 - [c22]Adrian Kim, Kyomin Jung, Yongsub Lim, Daniel Tarlow, Pushmeet Kohli:
Minimizing Expected Losses in Perturbation Models with Multidimensional Parametric Min-cuts. UAI 2015: 435-443 - 2014
- [c21]Nir Rosenfeld, Ofer Meshi, Daniel Tarlow, Amir Globerson:
Learning Structured Models with the AUC Loss and Its Generalizations. AISTATS 2014: 841-849 - [c20]Vittal Premachandran, Daniel Tarlow, Dhruv Batra:
Empirical Minimum Bayes Risk Prediction: How to Extract an Extra Few % Performance from Vision Models with Just Three More Parameters. CVPR 2014: 1043-1050 - [c19]Chris J. Maddison, Daniel Tarlow:
Structured Generative Models of Natural Source Code. ICML 2014: 649-657 - [c18]S. M. Ali Eslami, Daniel Tarlow, Pushmeet Kohli, John M. Winn:
Just-In-Time Learning for Fast and Flexible Inference. NIPS 2014: 154-162 - [c17]Chris J. Maddison, Daniel Tarlow, Tom Minka:
A* Sampling. NIPS 2014: 3086-3094 - [i7]Chris J. Maddison, Daniel Tarlow:
Structured Generative Models of Natural Source Code. CoRR abs/1401.0514 (2014) - [i6]Varun Jampani, S. M. Ali Eslami, Daniel Tarlow, Pushmeet Kohli, John M. Winn:
Consensus Message Passing for Layered Graphical Models. CoRR abs/1410.7452 (2014) - [i5]Faruk Ahmed, Daniel Tarlow, Dhruv Batra:
Candidate Constrained CRFs for Loss-Aware Structured Prediction. CoRR abs/1412.3369 (2014) - 2013
- [b1]Daniel Tarlow:
Efficient Machine Learning with High Order and Combinatorial Structures. University of Toronto, Canada, 2013 - [c16]Yujia Li, Daniel Tarlow, Richard S. Zemel:
Exploring Compositional High Order Pattern Potentials for Structured Output Learning. CVPR 2013: 49-56 - [c15]Daniel Tarlow, Kevin Swersky, Laurent Charlin, Ilya Sutskever, Richard S. Zemel:
Stochastic k-Neighborhood Selection for Supervised and Unsupervised Learning. ICML (3) 2013: 199-207 - [c14]Nicolas Heess, Daniel Tarlow, John M. Winn:
Learning to Pass Expectation Propagation Messages. NIPS 2013: 3219-3227 - [c13]Elad Mezuman, Daniel Tarlow, Amir Globerson, Yair Weiss:
Tighter Linear Program Relaxations for High Order Graphical Models. UAI 2013 - [i4]Elad Mezuman, Daniel Tarlow, Amir Globerson, Yair Weiss:
Tighter Linear Program Relaxations for High Order Graphical Models. CoRR abs/1309.6848 (2013) - 2012
- [c12]Daniel Tarlow, Ryan Prescott Adams:
Revisiting uncertainty in graph cut solutions. CVPR 2012: 2440-2447 - [c11]Kevin Swersky, Daniel Tarlow, Ryan P. Adams, Richard S. Zemel, Brendan J. Frey:
Probabilistic n-Choose-k Models for Classification and Ranking. NIPS 2012: 3059-3067 - [c10]Kevin Swersky, Daniel Tarlow, Ilya Sutskever, Ruslan Salakhutdinov, Richard S. Zemel, Ryan P. Adams:
Cardinality Restricted Boltzmann Machines. NIPS 2012: 3302-3310 - [c9]Daniel Tarlow, Kevin Swersky, Richard S. Zemel, Ryan Prescott Adams, Brendan J. Frey:
Fast Exact Inference for Recursive Cardinality Models. UAI 2012: 825-834 - [c8]Daniel Tarlow, Richard S. Zemel:
Structured Output Learning with High Order Loss Functions. AISTATS 2012: 1212-1220 - [c7]Daniel Tarlow, Ryan Prescott Adams, Richard S. Zemel:
Randomized Optimum Models for Structured Prediction. AISTATS 2012: 1221-1229 - [i3]Daniel Tarlow, Richard S. Zemel, Brendan J. Frey:
Flexible Priors for Exemplar-based Clustering. CoRR abs/1206.3294 (2012) - [i2]Daniel Tarlow, Kevin Swersky, Richard S. Zemel, Ryan Prescott Adams, Brendan J. Frey:
Fast Exact Inference for Recursive Cardinality Models. CoRR abs/1210.4899 (2012) - 2011
- [c6]Daniel Tarlow, Dhruv Batra, Pushmeet Kohli, Vladimir Kolmogorov:
Dynamic Tree Block Coordinate Ascent. ICML 2011: 113-120 - [c5]Daniel Tarlow, Inmar E. Givoni, Richard S. Zemel, Brendan J. Frey:
Graph Cuts is a Max-Product Algorithm. UAI 2011: 671-680 - [i1]Daniel Tarlow, Inmar E. Givoni, Richard S. Zemel, Brendan J. Frey:
Interpreting Graph Cuts as a Max-Product Algorithm. CoRR abs/1105.1178 (2011) - 2010
- [j1]David A. Ross, Daniel Tarlow, Richard S. Zemel:
Learning Articulated Structure and Motion. Int. J. Comput. Vis. 88(2): 214-237 (2010) - [c4]Daniel Tarlow, Inmar E. Givoni, Richard S. Zemel:
HOP-MAP: Efficient Message Passing with High Order Potentials. AISTATS 2010: 812-819
2000 – 2009
- 2008
- [c3]David A. Ross, Daniel Tarlow, Richard S. Zemel:
Unsupervised Learning of Skeletons from Motion. ECCV (3) 2008: 560-573 - [c2]Daniel Tarlow, Richard S. Zemel, Brendan J. Frey:
Flexible Priors for Exemplar-based Clustering. UAI 2008: 537-545 - 2006
- [c1]John C. Duchi, Daniel Tarlow, Gal Elidan, Daphne Koller:
Using Combinatorial Optimization within Max-Product Belief Propagation. NIPS 2006: 369-376
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-09-04 00:28 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint