default search action
SemEval@COLING 2014: Dublin, Ireland
- Preslav Nakov, Torsten Zesch:
Proceedings of the 8th International Workshop on Semantic Evaluation, SemEval@COLING 2014, Dublin, Ireland, August 23-24, 2014. The Association for Computer Linguistics 2014, ISBN 978-1-941643-24-2 - Marco Marelli, Luisa Bentivogli, Marco Baroni, Raffaella Bernardi, Stefano Menini, Roberto Zamparelli:
SemEval-2014 Task 1: Evaluation of Compositional Distributional Semantic Models on Full Sentences through Semantic Relatedness and Textual Entailment. 1-8 - Ioannis Klasinas, Elias Iosif, Katerina Louka, Alexandros Potamianos:
SemEval-2014 Task 2: Grammar Induction for Spoken Dialogue Systems. 9-16 - David Jurgens, Mohammad Taher Pilehvar, Roberto Navigli:
SemEval-2014 Task 3: Cross-Level Semantic Similarity. 17-26 - Maria Pontiki, Dimitris Galanis, John Pavlopoulos, Harris Papageorgiou, Ion Androutsopoulos, Suresh Manandhar:
SemEval-2014 Task 4: Aspect Based Sentiment Analysis. 27-35 - Maarten van Gompel, Iris Hendrickx, Antal van den Bosch, Els Lefever, Véronique Hoste:
SemEval 2014 Task 5 - L2 Writing Assistant. 36-44 - Kais Dukes:
SemEval-2014 Task 6: Supervised Semantic Parsing of Robotic Spatial Commands. 45-53 - Sameer Pradhan, Noémie Elhadad, Wendy W. Chapman, Suresh Manandhar, Guergana Savova:
SemEval-2014 Task 7: Analysis of Clinical Text. 54-62 - Stephan Oepen, Marco Kuhlmann, Yusuke Miyao, Daniel Zeman, Dan Flickinger, Jan Hajic, Angelina Ivanova, Yi Zhang:
SemEval 2014 Task 8: Broad-Coverage Semantic Dependency Parsing. 63-72 - Sara Rosenthal, Alan Ritter, Preslav Nakov, Veselin Stoyanov:
SemEval-2014 Task 9: Sentiment Analysis in Twitter. 73-80 - Eneko Agirre, Carmen Banea, Claire Cardie, Daniel M. Cer, Mona T. Diab, Aitor Gonzalez-Agirre, Weiwei Guo, Rada Mihalcea, German Rigau, Janyce Wiebe:
SemEval-2014 Task 10: Multilingual Semantic Textual Similarity. 81-91 - Osman Baskaya:
AI-KU: Using Co-Occurrence Modeling for Semantic Similarity. 92-96 - Corentin Ribeyre, Éric Villemonte de la Clergerie, Djamé Seddah:
Alpage: Transition-based Semantic Graph Parsing with Syntactic Features. 97-103 - Ana Alves, Adriana Ferrugento, Mariana Lourenço, Filipe Rodrigues:
ASAP: Automatic Semantic Alignment for Phrases. 104-108 - Svetlana Stoyanchev, Hyuckchul Jung, John Chen, Srinivas Bangalore:
AT&T: The Tag&Parse Approach to Semantic Parsing of Robot Spatial Commands. 109-113 - Rafael-Michael Karampatsis, John Pavlopoulos, Prodromos Malakasiotis:
AUEB: Two Stage Sentiment Analysis of Social Network Messages. 114-118 - John Philip McCrae, Philipp Cimiano:
Bielefeld SC: Orthonormal Topic Modelling for Grammar Induction. 119-122 - Nádia Félix F. da Silva, Estevam R. Hruschka Jr., Eduardo R. Hruschka:
Biocom_Usp: Tweet Sentiment Analysis with Adaptive Boosting Ensemble. 123-128 - Biocom Usp: Tweet Sentiment Analysis with Adaptive Boosting Ensemble. 129-134
- Sérgio Matos, Tiago Nunes, José Luís Oliveira:
BioinformaticsUA: Concept Recognition in Clinical Narratives Using a Modular and Highly Efficient Text Processing Framework. 135-139 - Pavel Blinov, Eugeny V. Kotelnikov:
Blinov: Distributed Representations of Words for Aspect-Based Sentiment Analysis at SemEval 2014. 140-144 - Saúl León, Darnes Vilariño, David Pinto, Mireya Tovar, Beatríz Beltrán:
BUAP: Evaluating Compositional Distributional Semantic Models on Full Sentences through Semantic Relatedness and Textual Entailment. 145-148 - Darnes Vilariño, David Pinto, Saúl León, Mireya Tovar, Beatríz Beltrán:
BUAP: Evaluating Features for Multilingual and Cross-Level Semantic Textual Similarity. 149-153 - David Pinto, Darnes Vilariño, Saúl León, Miguel Jasso-Hernández, Cupertino Lucero:
BUAP: Polarity Classification of Short Texts. 154-159 - Yves Bestgen:
CECL: a New Baseline and a Non-Compositional Approach for the Sick Benchmark. 160-165 - João Leal, Sara Pinto, Ana Bento, Hugo Gonçalo Oliveira, Paulo Gomes:
CISUC-KIS: Tackling Message Polarity Classification with a Large and Diverse Set of Features. 166-170 - Pablo Gamallo, Marcos García:
Citius: A Naive-Bayes Strategy for Sentiment Analysis on English Tweets. 171-175 - Sam Thomson, Brendan O'Connor, Jeffrey Flanigan, David Bamman, Jesse Dodge, Swabha Swayamdipta, Nathan Schneider, Chris Dyer, Noah A. Smith:
CMU: Arc-Factored, Discriminative Semantic Dependency Parsing. 176-180 - Kamla Al-Mannai, Hanan Alshikhabobakr, Sabih Bin Wasi, Rukhsar Neyaz, Houda Bouamor, Behrang Mohit:
CMUQ-Hybrid: Sentiment Classification By Feature Engineering and Parameter Tuning. 181-185 - Sabih Bin Wasi, Rukhsar Neyaz, Houda Bouamor, Behrang Mohit:
CMUQ$@$Qatar: Using Rich Lexical Features for Sentiment Analysis on Twitter. 186-191 - Cyril Goutte, Michel Simard, Marine Carpuat:
CNRC-TMT: Second Language Writing Assistant System Description. 192-197 - Sara Rosenthal, Kathy McKeown, Apoorv Agarwal:
Columbia NLP: Sentiment Detection of Sentences and Subjective Phrases in Social Media. 198-202 - Kim Schouten, Flavius Frasincar, Franciska de Jong:
COMMIT-P1WP3: A Co-occurrence Based Approach to Aspect-Level Sentiment Analysis. 203-207 - Duyu Tang, Furu Wei, Bing Qin, Ting Liu, Ming Zhou:
Coooolll: A Deep Learning System for Twitter Sentiment Classification. 208-212 - Natalie Schluter, Anders Søgaard, Jakob Elming, Dirk Hovy, Barbara Plank, Héctor Martínez Alonso, Anders Johannsen, Sigrid Klerke:
Copenhagen-Malmö: Tree Approximations of Semantic Parsing Problems. 213-217 - Julio Villena-Román, Janine García-Morera, José Carlos González Cristóbal:
DAEDALUS at SemEval-2014 Task 9: Comparing Approaches for Sentiment Analysis in Twitter. 218-222 - Joachim Wagner, Piyush Arora, Santiago Cortes, Utsab Barman, Dasha Bogdanova, Jennifer Foster, Lamia Tounsi:
DCU: Aspect-based Polarity Classification for SemEval Task 4. 223-229 - Magdalena Kacmajor, John D. Kelleher:
DIT: Summarisation and Semantic Expansion in Evaluating Semantic Similarity. 230-234 - Zhiqiang Toh, Wenting Wang:
DLIREC: Aspect Term Extraction and Term Polarity Classification System. 235-240 - Md. Arafat Sultan, Steven Bethard, Tamara Sumner:
DLS$@$CU: Sentence Similarity from Word Alignment. 241-246 - Ted Pedersen:
Duluth : Measuring Cross-Level Semantic Similarity with First and Second Order Dictionary Overlaps. 247-251 - Fangxi Zhang, Zhihua Zhang, Man Lan:
ECNU: A Combination Method and Multiple Features for Aspect Extraction and Sentiment Polarity Classification. 252-258 - Jiang Zhao, Man Lan, Tiantian Zhu:
ECNU: Expression- and Message-level Sentiment Orientation Classification in Twitter Using Multiple Effective Features. 259-264 - Tiantian Zhu, Man Lan:
ECNU: Leveraging on Ensemble of Heterogeneous Features and Information Enrichment for Cross Level Semantic Similarity Estimation. 265-270 - Jiang Zhao, Tiantian Zhu, Man Lan:
ECNU: One Stone Two Birds: Ensemble of Heterogenous Measures for Semantic Relatedness and Textual Entailment. 271-277 - Parth Pathak, Pinal Patel, Vishal Panchal, Narayan Choudhary, Amrish Patel, Gautam Joshi:
ezDI: A Hybrid CRF and SVM based Model for Detecting and Encoding Disorder Mentions in Clinical Notes. 278-283 - Ngoc Phuoc An Vo, Tommaso Caselli, Octavian Popescu:
FBK-TR: Applying SVM with Multiple Linguistic Features for Cross-Level Semantic Similarity. 284-288 - Ngoc Phuoc An Vo, Octavian Popescu, Tommaso Caselli:
FBK-TR: SVM for Semantic Relatedeness and Corpus Patterns for RTE. 289-293 - Javi Fernández, Yoan Gutiérrez, José Manuel Gómez Soriano, Patricio Martínez-Barco:
GPLSI: Supervised Sentiment Analysis in Twitter using Skipgrams. 294-299 - Lorenzo Ferrone, Fabio Massimo Zanzotto:
haLF: Comparing a Pure CDSM Approach with a Standard Machine Learning System for RTE. 300-304 - José G. Moreno, Rumen Moraliyski, Asma Berrezoug, Gaël Dias:
HulTech: A General Purpose System for Cross-Level Semantic Similarity based on Anchor Web Counts. 305-308 - Maryna Chernyshevich:
IHS R&D Belarus: Cross-domain extraction of product features using CRF. 309-313 - Utpal Kumar Sikdar, Asif Ekbal, Sriparna Saha:
IITP: A Supervised Approach for Disorder Mention Detection and Disambiguation. 314-318 - Deepak Kumar Gupta, Asif Ekbal:
IITP: Supervised Machine Learning for Aspect based Sentiment Analysis. 319-323 - Raja Selvarajan, Asif Ekbal:
IITPatna: Supervised Approach for Sentiment Analysis in Twitter. 324-328 - Alice Lai, Julia Hockenmaier:
Illinois-LH: A Denotational and Distributional Approach to Semantics. 329-334 - Yusuke Miyao, Stephan Oepen, Daniel Zeman:
In-House: An Ensemble of Pre-Existing Off-the-Shelf Parsers. 335-340 - Vikram Singh, Arif Md. Khan, Asif Ekbal:
Indian Institute of Technology-Patna: Sentiment Analysis in Twitter. 341-345 - Sapna Negi, Paul Buitelaar:
INSIGHT Galway: Syntactic and Lexical Features for Aspect Based Sentiment Analysis. 346-350 - Fritjof Bornebusch, Glaucia Cancino, Melanie Diepenbeck, Rolf Drechsler, Smith Djomkam, Alvine Nzeungang Fanseu, Maryam Jalali, Marc Michael, Jamal Mohsen, Max Nitze, Christina Plump, Mathias Soeken, Hubert Fred Tchambo, Toni, Henning Ziegler:
iTac: Aspect Based Sentiment Analysis using Sentiment Trees and Dictionaries. 351-355 - Alex Rudnick, Levi King, Can Liu, Markus Dickinson, Sandra Kübler:
IUCL: Combining Information Sources for SemEval Task 5. 356-360 - Koldo Gojenola, Maite Oronoz, Alicia Pérez, Arantza Casillas:
IxaMed: Applying Freeling and a Perceptron Sequential Tagger at the Shared Task on Analyzing Clinical Texts. 361-365 - Oliver Dürr, Fatih Uzdilli, Mark Cieliebak:
JOINT_FORCES: Unite Competing Sentiment Classifiers with Random Forest. 366-369 - Braja Gopal Patra, Soumik Mandal, Dipankar Das, Sivaji Bandyopadhyay:
JU_CSE: A Conditional Random Field (CRF) Based Approach to Aspect Based Sentiment Analysis. 370-374 - Swarnendu Ghosh, Nibaran Das, Teresa Gonçalves, Paulo Quaresma:
JU-Evora: A Graph Based Cross-Level Semantic Similarity Analysis using Discourse Information. 375-379 - Ameeta Agrawal, Aijun An:
Kea: Sentiment Analysis of Phrases Within Short Texts. 380-384 - Willem Mattelaer, Mathias Verbeke, Davide Nitti:
KUL-Eval: A Combinatory Categorial Grammar Approach for Improving Semantic Parsing of Robot Commands using Spatial Context. 385-390 - Beakal Gizachew Assefa:
KUNLPLab: Sentiment Analysis on Twitter Data. 391-394 - Marco Kuhlmann:
Linköping: Cubic-Time Graph Parsing with a Simple Scoring Scheme. 395-399 - Davide Buscaldi, Jorge García Flores, Joseph Le Roux, Nadi Tomeh, Belém Priego Sánchez:
LIPN: Introducing a new Geographical Context Similarity Measure and a Statistical Similarity Measure based on the Bhattacharyya coefficient. 400-405 - Cynthia Van Hee, Marjan Van de Kauter, Orphée De Clercq, Els Lefever, Véronique Hoste:
LT3: Sentiment Classification in User-Generated Content Using a Rich Feature Set. 406-410 - David Vilares, Miguel Hermo, Miguel A. Alonso, Carlos Gómez-Rodríguez, Yerai Doval:
LyS: Porting a Twitter Sentiment Analysis Approach from Spanish to English. 411-415 - Abhay L. Kashyap, Lushan Han, Roberto Yus, Jennifer Sleeman, Taneeya Satyapanich, Sunil Gandhi, Tim Finin:
Meerkat Mafia: Multilingual and Cross-Level Semantic Textual Similarity Systems. 416-423 - Alejandro Riveros, Maria De-Arteaga, Fabio A. González, Sergio Jiménez, Henning Müller:
MindLab-UNAL: Comparing Metamap and T-mapper for Medical Concept Extraction in SemEval 2014 Task 7. 424-427 - Pedro Paulo Balage Filho, Lucas Avanço, Thiago Alexandre Salgueiro Pardo, Maria das Graças Volpe Nunes:
NILC_USP: An Improved Hybrid System for Sentiment Analysis in Twitter Messages. 428-432 - Pedro Balage Filho, Thiago Alexandre Salgueiro Pardo:
NILC_USP: Aspect Extraction using Semantic Labels. 433-436 - Svetlana Kiritchenko, Xiaodan Zhu, Colin Cherry, Saif M. Mohammad:
NRC-Canada-2014: Detecting Aspects and Sentiment in Customer Reviews. 437-442 - Xiaodan Zhu, Svetlana Kiritchenko, Saif M. Mohammad:
NRC-Canada-2014: Recent Improvements in the Sentiment Analysis of Tweets. 443-447 - André Lynum, Partha Pakray, Björn Gambäck, Sergio Jiménez:
NTNU: Measuring Semantic Similarity with Sublexical Feature Representations and Soft Cardinality. 448-453 - Marek Kozlowski:
OPI: Semeval-2014 Task 3 System Description. 454-458 - Yantao Du, Fan Zhang, Weiwei Sun, Xiaojun Wan:
Peking: Profiling Syntactic Tree Parsing Techniques for Semantic Graph Parsing. 459-464 - Zeljko Agic, Alexander Koller:
Potsdam: Semantic Dependency Parsing by Bidirectional Graph-Tree Transformations and Syntactic Parsing. 465-470 - André F. T. Martins, Mariana S. C. Almeida:
Priberam: A Turbo Semantic Parser with Second Order Features. 471-476 - S. V. Ramanan, P. Senthil Nathan:
RelAgent: Entity Detection and Normalization for Diseases in Clinical Records: a Linguistically Driven Approach. 477-481 - Kilian Evang, Johan Bos:
RoBox: CCG with Structured Perceptron for Supervised Semantic Parsing of Robotic Spatial Commands. 482-486 - Ergun Biçici, Andy Way:
RTM-DCU: Referential Translation Machines for Semantic Similarity. 487-496 - Tobias Günther, Jean Vancoppenolle, Richard Johansson:
RTRGO: Enhancing the GU-MLT-LT System for Sentiment Analysis of Short Messages. 497-502 - Nora Hollenstein, Michael Amsler, Martina Bachmann, Manfred Klenner:
SA-UZH: Verb-based Sentiment Analysis. 503-507 - Kalliopi Zervanou, Nikolaos Malandrakis, Shrikanth S. Narayanan:
SAIL-GRS: Grammar Induction for Spoken Dialogue Systems using CF-IRF Rule Similarity. 508-511 - Nikolaos Malandrakis, Michael Falcone, Colin Vaz, Jesse James Bisogni, Alexandros Potamianos, Shrikanth S. Narayanan:
SAIL: Sentiment Analysis using Semantic Similarity and Contrast Features. 512-516 - Naveen Nandan, Daniel Dahlmeier, Akriti Vij, Nishtha Malhotra:
SAP-RI: A Constrained and Supervised Approach for Aspect-Based Sentiment Analysis. 517-521 - Akriti Vij, Nishtha Malhotra, Naveen Nandan, Daniel Dahlmeier:
SAP-RI: Twitter Sentiment Analysis in Two Days. 522-526 - Pengfei Liu, Helen M. Meng:
SeemGo: Conditional Random Fields Labeling and Maximum Entropy Classification for Aspect Based Sentiment Analysis. 527-531 - Thomas Proisl, Stefan Evert, Paul Greiner, Besim Kabashi:
SemantiKLUE: Robust Semantic Similarity at Multiple Levels Using Maximum Weight Matching. 532-540 - Liling Tan, Anne Schumann, José Manuel Martínez Martínez, Francis Bond:
Sensible: L2 Translation Assistance by Emulating the Manual Post-Editing Process. 541-545 - José Saias:
Senti.ue: Tweet Overall Sentiment Classification Approach for SemEval-2014 Task 9. 546-550 - Stefan Evert, Thomas Proisl, Paul Greiner, Besim Kabashi:
SentiKLUE: Updating a Polarity Classifier in 48 Hours. 551-555 - Peter Ljunglöf:
ShrdLite: Semantic Parsing Using a Handmade Grammar. 556-559 - Carmen Banea, Di Chen, Rada Mihalcea, Claire Cardie, Janyce Wiebe:
SimCompass: Using Deep Learning Word Embeddings to Assess Cross-level Similarity. 560-565 - Salud María Jiménez-Zafra, Eugenio Martínez-Cámara, Maite Martín-Valdivia, Luis Alfonso Ureña López:
SINAI: Voting System for Aspect Based Sentiment Analysis. 566-571 - Eugenio Martínez-Cámara, Salud María Jiménez-Zafra, Maite Martín-Valdivia, Luis Alfonso Ureña López:
SINAI: Voting System for Twitter Sentiment Analysis. 572-577 - Clemens Schulze Wettendorf, Robin Jegan, Allan Körner, Julia Zerche, Nataliia Plotnikova, Julian Moreth, Tamara Schertl, Verena Obermeyer, Susanne Streil, Tamara Willacker, Stefan Evert:
SNAP: A Multi-Stage XML-Pipeline for Aspect Based Sentiment Analysis. 578-584 - Pingping Huang, Baobao Chang:
SSMT: A Machine Translation Evaluation View To Paragraph-to-Sentence Semantic Similarity. 585-589 - Boris Velichkov, Borislav Kapukaranov, Ivan Grozev, Jeni Karanesheva, Todor Mihaylov, Yasen Kiprov, Preslav Nakov, Ivan Koychev, Georgi Georgiev:
SU-FMI: System Description for SemEval-2014 Task 9 on Sentiment Analysis in Twitter. 590-595 - Hussam Hamdan, Patrice Bellot, Frédéric Béchet:
Supervised Methods for Aspect-Based Sentiment Analysis. 596-600 - Martin Jaggi, Fatih Uzdilli, Mark Cieliebak:
Swiss-Chocolate: Sentiment Detection using Sparse SVMs and Part-Of-Speech n-Grams. 601-604 - Alexandre Denis, Samuel Cruz-Lara, Nadia Bellalem, Lotfi Bellalem:
Synalp-Empathic: A Valence Shifting Hybrid System for Sentiment Analysis. 605-609 - Viktor Hangya, Gábor Berend, István Varga, Richárd Farkas:
SZTE-NLP: Aspect level opinion mining exploiting syntactic cues. 610-614 - Melinda Katona, Richárd Farkas:
SZTE-NLP: Clinical Text Analysis with Named Entity Recognition. 615-618 - Arun Kumar Jayapal, Martin Emms, John D. Kelleher:
TCDSCSS: Dimensionality Reduction to Evaluate Texts of Varying Lengths - an IR Approach. 619-623 - Anubhav Gupta:
Team Z: Wiktionary as a L2 Writing Assistant. 624-627 - Yasuhide Miura, Shigeyuki Sakaki, Keigo Hattori, Tomoko Ohkuma:
TeamX: A Sentiment Analyzer with Enhanced Lexicon Mapping and Weighting Scheme for Unbalanced Data. 628-632 - Anubhav Gupta:
TeamZ: Measuring Semantic Textual Similarity for Spanish Using an Overlap-Based Approach. 633-635 - Hussam Hamdan, Patrice Bellot, Frédéric Béchet:
The Impact of Z_score on Twitter Sentiment Analysis. 636-641 - Johannes Bjerva, Johan Bos, Rob van der Goot, Malvina Nissim:
The Meaning Factory: Formal Semantics for Recognizing Textual Entailment and Determining Semantic Similarity. 642-646 - Cícero Nogueira dos Santos:
Think Positive: Towards Twitter Sentiment Analysis from Scratch. 647-651 - Ankur Parikh, P. V. S. Avinesh, Joy Mustafi, Lalit Agarwalla, Ashish Mungi:
ThinkMiners: Disorder Recognition using Conditional Random Fields and Distributional Semantics. 652-656 - Tawunrat Chalothorn, Jeremy Ellman:
TJP: Identifying the Polarity of Tweets from Contexts. 657-662 - Jitendra Jonnagaddala, Manish Kumar, Hong-Jie Dai, Enny Rachmani, Chien-Yeh Hsu:
TMUNSW: Disorder Concept Recognition and Normalization in Clinical Notes for SemEval-2014 Task 7. 663-667 - Arodami Chorianopoulou, Georgia Athanasopoulou, Elias Iosif, Ioannis Klasinas, Alexandros Potamianos:
tucSage: Grammar Rule Induction for Spoken Dialogue Systems via Probabilistic Candidate Selection. 668-672 - Silvio Amir, Miguel B. Almeida, Bruno Martins, João Filgueiras, Mário J. Silva:
TUGAS: Exploiting unlabelled data for Twitter sentiment analysis. 673-677 - Jenna Kanerva, Juhani Luotolahti, Filip Ginter:
Turku: Broad-Coverage Semantic Parsing with Rich Features. 678-682 - Viktor Pekar, Naveed Afzal, Bernd Bohnet:
UBham: Lexical Resources and Dependency Parsing for Aspect-Based Sentiment Analysis. 683-687 - Eva Hasler:
UEdin: Translating L1 Phrases in L2 Context using Context-Sensitive SMT. 688-693 - Katerina Veselovská, Ales Tamchyna:
ÚFAL: Using Hand-crafted Rules in Aspect Based Sentiment Analysis on Parsed Data. 694-698 - Elisabeth Lien, Milen Kouylekov:
UIO-Lien: Entailment Recognition using Minimal Recursion Semantics. 699-703 - Lucie Flekova, Oliver Ferschke, Iryna Gurevych:
UKPDIPF: Lexical Semantic Approach to Sentiment Polarity Prediction in Twitter Data. 704-710 - André Leal, Diogo Gonçalves, Bruno Martins, Francisco M. Couto:
ULisboa: Identification and Classification of Medical Concepts. 711-715 - Alexander Chavez, Héctor Dávila, Yoan Gutiérrez, Antonio Fernández Orquín, Andrés Montoyo, Rafael Muñoz:
UMCC_DLSI_SemSim: Multilingual System for Measuring Semantic Textual Similarity. 716-721 - Yenier Castañeda, Armando Collazo, Elvis Crego, Jorge L. Garcia, Yoan Gutiérrez, David Tomás, Andrés Montoyo, Rafael Muñoz:
UMCC_DLSI: A Probabilistic Automata for Aspect Based Sentiment Analysis. 722-726 - Pedro Aniel Sánchez-Mirabal, Yarelis Ruano Torres, Suilen Hernández Alvarado, Yoan Gutiérrez, Andrés Montoyo, Rafael Muñoz:
UMCC_DLSI: Sentiment Analysis in Twitter using Polirity Lexicons and Tweet Similarity. 727-731 - Sergio Jiménez, George Dueñas, Julia Baquero, Alexander F. Gelbukh:
UNAL-NLP: Combining Soft Cardinality Features for Semantic Textual Similarity, Relatedness and Entailment. 732-742 - Emilio Silva-Schlenker, Sergio Jiménez, Julia Baquero:
UNAL-NLP: Cross-Lingual Phrase Sense Disambiguation with Syntactic Dependency Trees. 743-747 - Pierpaolo Basile, Annalina Caputo, Giovanni Semeraro:
UNIBA: Combining Distributional Semantic Models and Word Sense Disambiguation for Textual Similarity. 748-753 - Giuseppe Attardi, Vittoria Cozza, Daniele Sartiano:
UniPi: Recognition of Mentions of Disorders in Clinical Text. 754-760 - Giuseppe Castellucci, Simone Filice, Danilo Croce, Roberto Basili:
UNITOR: Aspect Based Sentiment Analysis with Structured Learning. 761-767 - Richard Townsend, Aaron Kalair, Ojas Kulkarni, Rob Procter, Maria Liakata:
University_of_Warwick: SENTIADAPTRON - A Domain Adaptable Sentiment Analyser for Tweets - Meets SemEval. 768-772 - Reynier Ortega Bueno, Adrian Fonseca Bruzón, Carlos Muñiz Cuza, Yoan Gutiérrez, Andrés Montoyo:
UO_UA: Using Latent Semantic Analysis to Build a Domain-Dependent Sentiment Resource. 773-778 - Miguel Rios:
UoW: Multi-task Learning Gaussian Process for Semantic Textual Similarity. 779-784 - Rohit Gupta, Hanna Béchara, Ismaïl El Maarouf, Constantin Orasan:
UoW: NLP techniques developed at the University of Wolverhampton for Semantic Similarity and Textual Entailment. 785-789 - Cindi Thompson:
USF: Chunking for Aspect-term Identification & Polarity Classification. 790-795 - Islam Beltagy, Stephen Roller, Gemma Boleda, Katrin Erk, Raymond J. Mooney:
UTexas: Natural Language Semantics using Distributional Semantics and Probabilistic Logic. 796-801 - Yaoyun Zhang, Jingqi Wang, Buzhou Tang, Yonghui Wu, Min Jiang, Yukun Chen, Hua Xu:
UTH_CCB: A report for SemEval 2014 - Task 7 Analysis of Clinical Text. 802-806 - Suwisa Kaewphan, Kai Hakala, Filip Ginter:
UTU: Disease Mention Recognition and Normalization with CRFs and Vector Space Representations. 807-811 - Woodley Packard:
UW-MRS: Leveraging a Deep Grammar for Robotic Spatial Commands. 812-816 - Tomás Brychcín, Michal Konkol, Josef Steinberger:
UWB: Machine Learning Approach to Aspect-Based Sentiment Analysis. 817-822 - Rohit J. Kate:
UWM: Applying an Existing Trainable Semantic Parser to Parse Robotic Spatial Commands. 823-827 - Omid Ghiasvand, Rohit J. Kate:
UWM: Disorder Mention Extraction from Clinical Text Using CRFs and Normalization Using Learned Edit Distance Patterns. 828-832 - Aitor García Pablos, Montse Cuadros, German Rigau:
V3: Unsupervised Generation of Domain Aspect Terms for Aspect Based Sentiment Analysis. 833-837 - Caroline Brun, Diana Nicoleta Popa, Claude Roux:
XRCE: Hybrid Classification for Aspect-based Sentiment Analysis. 838-842
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.