default search action
15th COLT 2002: Sydney, Australia
- Jyrki Kivinen, Robert H. Sloan:
Computational Learning Theory, 15th Annual Conference on Computational Learning Theory, COLT 2002, Sydney, Australia, July 8-10, 2002, Proceedings. Lecture Notes in Computer Science 2375, Springer 2002, ISBN 3-540-43836-X - Shahar Mendelson, Robert C. Williamson:
Agnostic Learning Nonconvex Function Classes. 1-13 - Shahar Mendelson, Roman Vershynin:
Entropy, Combinatorial Dimensions and Random Averages. 14-28 - Shahar Mendelson:
Geometric Parameters of Kernel Machines. 29-43 - Peter L. Bartlett, Olivier Bousquet, Shahar Mendelson:
Localized Rademacher Complexities. 44-58 - Olivier Bousquet, Vladimir Koltchinskii, Dmitriy Panchenko:
Some Local Measures of Complexity of Convex Hulls and Generalization Bounds. 59-73 - Eiji Takimoto, Manfred K. Warmuth:
Path Kernels and Multiplicative Updates. 74-89 - Michael V. Vyugin, Vladimir V. V'yugin:
Predictive Complexity and Information. 90-104 - Yuri Kalnishkan, Michael V. Vyugin:
Mixability and the Existence of Weak Complexities. 105-120 - Nicolò Cesa-Bianchi, Alex Conconi, Claudio Gentile:
A Second-Order Perceptron Algorithm. 121-137 - Chris Mesterharm:
Tracking Linear-Threshold Concepts with Winnow. 138-152 - Henning Fernau:
Learning Tree Languages from Text. 153-168 - Yusuke Suzuki, Ryuta Akanuma, Takayoshi Shoudai, Tetsuhiro Miyahara, Tomoyuki Uchida:
Polynomial Time Inductive Inference of Ordered Tree Patterns with Internal Structured Variables from Positive Data. 169-184 - Colin de la Higuera, José Oncina:
Inferring Deterministic Linear Languages. 185-200 - Sandra Zilles:
Merging Uniform Inductive Learners. 201-215 - Jürgen Schmidhuber:
The Speed Prior: A New Simplicity Measure Yielding Near-Optimal Computable Predictions. 216-228 - Ke Yang:
New Lower Bounds for Statistical Query Learning. 229-243 - Nader H. Bshouty, Jeffrey C. Jackson, Christino Tamon:
Exploring Learnability between Exact and PAC. 244-254 - Eyal Even-Dar, Shie Mannor, Yishay Mansour:
PAC Bounds for Multi-armed Bandit and Markov Decision Processes. 255-270 - Nader H. Bshouty, Lynn Burroughs:
Bounds for the Minimum Disagreement Problem with Applications to Learning Theory. 271-286 - Nader H. Bshouty, Lynn Burroughs:
On the Proper Learning of Axis Parallel Concepts. 287-302 - Gábor Lugosi, Nicolas Vayatis:
A Consistent Strategy for Boosting Algorithms. 303-318 - Shie Mannor, Ron Meir, Tong Zhang:
The Consistency of Greedy Algorithms for Classification. 319-333 - Gunnar Rätsch, Manfred K. Warmuth:
Maximizing the Margin with Boosting. 334-350 - Sanjoy Dasgupta:
Performance Guarantees for Hierarchical Clustering. 351-363 - Marcus Hutter:
Self-Optimizing and Pareto-Optimal Policies in General Environments Based on Bayes-Mixtures. 364-379 - Lance Fortnow, Jack H. Lutz:
Prediction and Dimension. 380-395 - Christos H. Papadimitriou:
Learning the Internet. 396
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.