default search action
Sjoerd van Steenkiste
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c21]Shravan Nayak, Kanishk Jain, Rabiul Awal, Siva Reddy, Sjoerd van Steenkiste, Lisa Anne Hendricks, Karolina Stanczak, Aishwarya Agrawal:
Benchmarking Vision Language Models for Cultural Understanding. EMNLP 2024: 5769-5790 - [c20]Allan Jabri, Sjoerd van Steenkiste, Emiel Hoogeboom, Mehdi S. M. Sajjadi, Thomas Kipf:
DORSal: Diffusion for Object-centric Representations of Scenes et al. ICLR 2024 - [c19]Maximilian Seitzer, Sjoerd van Steenkiste, Thomas Kipf, Klaus Greff, Mehdi S. M. Sajjadi:
DyST: Towards Dynamic Neural Scene Representations on Real-World Videos. ICLR 2024 - [c18]Jackson Petty, Sjoerd van Steenkiste, Ishita Dasgupta, Fei Sha, Dan Garrette, Tal Linzen:
The Impact of Depth on Compositional Generalization in Transformer Language Models. NAACL-HLT 2024: 7239-7252 - [c17]Tiwalayo Eisape, Michael Henry Tessler, Ishita Dasgupta, Fei Sha, Sjoerd van Steenkiste, Tal Linzen:
A Systematic Comparison of Syllogistic Reasoning in Humans and Language Models. NAACL-HLT 2024: 8425-8444 - [i26]Ziyi Wu, Yulia Rubanova, Rishabh Kabra, Drew A. Hudson, Igor Gilitschenski, Yusuf Aytar, Sjoerd van Steenkiste, Kelsey R. Allen, Thomas Kipf:
Neural Assets: 3D-Aware Multi-Object Scene Synthesis with Image Diffusion Models. CoRR abs/2406.09292 (2024) - [i25]Shravan Nayak, Kanishk Jain, Rabiul Awal, Siva Reddy, Sjoerd van Steenkiste, Lisa Anne Hendricks, Karolina Stanczak, Aishwarya Agrawal:
Benchmarking Vision Language Models for Cultural Understanding. CoRR abs/2407.10920 (2024) - [i24]Jackson Petty, Sjoerd van Steenkiste, Tal Linzen:
How Does Code Pretraining Affect Language Model Task Performance? CoRR abs/2409.04556 (2024) - 2023
- [j3]Anand Gopalakrishnan, Kazuki Irie, Jürgen Schmidhuber, Sjoerd van Steenkiste:
Unsupervised Learning of Temporal Abstractions With Slot-Based Transformers. Neural Comput. 35(4): 593-626 (2023) - [c16]Ondrej Biza, Sjoerd van Steenkiste, Mehdi S. M. Sajjadi, Gamaleldin Fathy Elsayed, Aravindh Mahendran, Thomas Kipf:
Invariant Slot Attention: Object Discovery with Slot-Centric Reference Frames. ICML 2023: 2507-2527 - [c15]Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer, Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, Rodolphe Jenatton, Lucas Beyer, Michael Tschannen, Anurag Arnab, Xiao Wang, Carlos Riquelme Ruiz, Matthias Minderer, Joan Puigcerver, Utku Evci, Manoj Kumar, Sjoerd van Steenkiste, Gamaleldin Fathy Elsayed, Aravindh Mahendran, Fisher Yu, Avital Oliver, Fantine Huot, Jasmijn Bastings, Mark Collier, Alexey A. Gritsenko, Vighnesh Birodkar, Cristina Nader Vasconcelos, Yi Tay, Thomas Mensink, Alexander Kolesnikov, Filip Pavetic, Dustin Tran, Thomas Kipf, Mario Lucic, Xiaohua Zhai, Daniel Keysers, Jeremiah J. Harmsen, Neil Houlsby:
Scaling Vision Transformers to 22 Billion Parameters. ICML 2023: 7480-7512 - [c14]Mihir Prabhudesai, Anirudh Goyal, Sujoy Paul, Sjoerd van Steenkiste, Mehdi S. M. Sajjadi, Gaurav Aggarwal, Thomas Kipf, Deepak Pathak, Katerina Fragkiadaki:
Test-time Adaptation with Slot-Centric Models. ICML 2023: 28151-28166 - [i23]Ondrej Biza, Sjoerd van Steenkiste, Mehdi S. M. Sajjadi, Gamaleldin F. Elsayed, Aravindh Mahendran, Thomas Kipf:
Invariant Slot Attention: Object Discovery with Slot-Centric Reference Frames. CoRR abs/2302.04973 (2023) - [i22]Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer, Andreas Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, Rodolphe Jenatton, Lucas Beyer, Michael Tschannen, Anurag Arnab, Xiao Wang, Carlos Riquelme, Matthias Minderer, Joan Puigcerver, Utku Evci, Manoj Kumar, Sjoerd van Steenkiste, Gamaleldin F. Elsayed, Aravindh Mahendran, Fisher Yu, Avital Oliver, Fantine Huot, Jasmijn Bastings, Mark Patrick Collier, Alexey A. Gritsenko, Vighnesh Birodkar, Cristina Nader Vasconcelos, Yi Tay, Thomas Mensink, Alexander Kolesnikov, Filip Pavetic, Dustin Tran, Thomas Kipf, Mario Lucic, Xiaohua Zhai, Daniel Keysers, Jeremiah Harmsen, Neil Houlsby:
Scaling Vision Transformers to 22 Billion Parameters. CoRR abs/2302.05442 (2023) - [i21]Roland S. Zimmermann, Sjoerd van Steenkiste, Mehdi S. M. Sajjadi, Thomas Kipf, Klaus Greff:
Sensitivity of Slot-Based Object-Centric Models to their Number of Slots. CoRR abs/2305.18890 (2023) - [i20]Allan Jabri, Sjoerd van Steenkiste, Emiel Hoogeboom, Mehdi S. M. Sajjadi, Thomas Kipf:
DORSal: Diffusion for Object-centric Representations of Scenes et al.. CoRR abs/2306.08068 (2023) - [i19]Maximilian Seitzer, Sjoerd van Steenkiste, Thomas Kipf, Klaus Greff, Mehdi S. M. Sajjadi:
DyST: Towards Dynamic Neural Scene Representations on Real-World Videos. CoRR abs/2310.06020 (2023) - [i18]Jackson Petty, Sjoerd van Steenkiste, Ishita Dasgupta, Fei Sha, Dan Garrette, Tal Linzen:
The Impact of Depth and Width on Transformer Language Model Generalization. CoRR abs/2310.19956 (2023) - [i17]Tiwalayo Eisape, Michael Henry Tessler, Ishita Dasgupta, Fei Sha, Sjoerd van Steenkiste, Tal Linzen:
A Systematic Comparison of Syllogistic Reasoning in Humans and Language Models. CoRR abs/2311.00445 (2023) - [i16]Jiao Sun, Deqing Fu, Yushi Hu, Su Wang, Royi Rassin, Da-Cheng Juan, Dana Alon, Charles Herrmann, Sjoerd van Steenkiste, Ranjay Krishna, Cyrus Rashtchian:
DreamSync: Aligning Text-to-Image Generation with Image Understanding Feedback. CoRR abs/2311.17946 (2023) - 2022
- [c13]Gamaleldin F. Elsayed, Aravindh Mahendran, Sjoerd van Steenkiste, Klaus Greff, Michael C. Mozer, Thomas Kipf:
SAVi++: Towards End-to-End Object-Centric Learning from Real-World Videos. NeurIPS 2022 - [c12]Aditya A. Ramesh, Louis Kirsch, Sjoerd van Steenkiste, Jürgen Schmidhuber:
Exploring through Random Curiosity with General Value Functions. NeurIPS 2022 - [c11]Mehdi S. M. Sajjadi, Daniel Duckworth, Aravindh Mahendran, Sjoerd van Steenkiste, Filip Pavetic, Mario Lucic, Leonidas J. Guibas, Klaus Greff, Thomas Kipf:
Object Scene Representation Transformer. NeurIPS 2022 - [i15]Anand Gopalakrishnan, Kazuki Irie, Jürgen Schmidhuber, Sjoerd van Steenkiste:
Unsupervised Learning of Temporal Abstractions with Slot-based Transformers. CoRR abs/2203.13573 (2022) - [i14]Mehdi S. M. Sajjadi, Daniel Duckworth, Aravindh Mahendran, Sjoerd van Steenkiste, Filip Pavetic, Mario Lucic, Leonidas J. Guibas, Klaus Greff, Thomas Kipf:
Object Scene Representation Transformer. CoRR abs/2206.06922 (2022) - [i13]Gamaleldin F. Elsayed, Aravindh Mahendran, Sjoerd van Steenkiste, Klaus Greff, Michael C. Mozer, Thomas Kipf:
SAVi++: Towards End-to-End Object-Centric Learning from Real-World Videos. CoRR abs/2206.07764 (2022) - [i12]Aditya A. Ramesh, Louis Kirsch, Sjoerd van Steenkiste, Jürgen Schmidhuber:
Exploring through Random Curiosity with General Value Functions. CoRR abs/2211.10282 (2022) - 2021
- [j2]Joël M. H. Karel, Sjoerd van Steenkiste, Ralf L. M. Peeters:
The Design of Matched Balanced Orthogonal Multiwavelets. Frontiers Appl. Math. Stat. 7: 785803 (2021) - [c10]Aleksandar Stanic, Sjoerd van Steenkiste, Jürgen Schmidhuber:
Hierarchical Relational Inference. AAAI 2021: 9730-9738 - [c9]Róbert Csordás, Sjoerd van Steenkiste, Jürgen Schmidhuber:
Are Neural Nets Modular? Inspecting Functional Modularity Through Differentiable Weight Masks. ICLR 2021 - [c8]Anand Gopalakrishnan, Sjoerd van Steenkiste, Jürgen Schmidhuber:
Unsupervised Object Keypoint Learning using Local Spatial Predictability. ICLR 2021 - 2020
- [j1]Sjoerd van Steenkiste, Karol Kurach, Jürgen Schmidhuber, Sylvain Gelly:
Investigating object compositionality in Generative Adversarial Networks. Neural Networks 130: 309-325 (2020) - [c7]Louis Kirsch, Sjoerd van Steenkiste, Jürgen Schmidhuber:
Improving Generalization in Meta Reinforcement Learning using Learned Objectives. ICLR 2020 - [i11]Róbert Csordás, Sjoerd van Steenkiste, Jürgen Schmidhuber:
Are Neural Nets Modular? Inspecting Functional Modularity Through Differentiable Weight Masks. CoRR abs/2010.02066 (2020) - [i10]Aleksandar Stanic, Sjoerd van Steenkiste, Jürgen Schmidhuber:
Hierarchical Relational Inference. CoRR abs/2010.03635 (2020) - [i9]Anand Gopalakrishnan, Sjoerd van Steenkiste, Jürgen Schmidhuber:
Unsupervised Object Keypoint Learning using Local Spatial Predictability. CoRR abs/2011.12930 (2020) - [i8]Klaus Greff, Sjoerd van Steenkiste, Jürgen Schmidhuber:
On the Binding Problem in Artificial Neural Networks. CoRR abs/2012.05208 (2020)
2010 – 2019
- 2019
- [c6]Thomas Unterthiner, Sjoerd van Steenkiste, Karol Kurach, Raphaël Marinier, Marcin Michalski, Sylvain Gelly:
FVD: A new Metric for Video Generation. DGS@ICLR 2019 - [c5]Sjoerd van Steenkiste, Francesco Locatello, Jürgen Schmidhuber, Olivier Bachem:
Are Disentangled Representations Helpful for Abstract Visual Reasoning? NeurIPS 2019: 14222-14235 - [i7]Sjoerd van Steenkiste, Francesco Locatello, Jürgen Schmidhuber, Olivier Bachem:
Are Disentangled Representations Helpful for Abstract Visual Reasoning? CoRR abs/1905.12506 (2019) - [i6]Sjoerd van Steenkiste, Klaus Greff, Jürgen Schmidhuber:
A Perspective on Objects and Systematic Generalization in Model-Based RL. CoRR abs/1906.01035 (2019) - [i5]Louis Kirsch, Sjoerd van Steenkiste, Jürgen Schmidhuber:
Improving Generalization in Meta Reinforcement Learning using Learned Objectives. CoRR abs/1910.04098 (2019) - 2018
- [c4]Sjoerd van Steenkiste, Michael Chang, Klaus Greff, Jürgen Schmidhuber:
Relational Neural Expectation Maximization: Unsupervised Discovery of Objects and their Interactions. ICLR (Poster) 2018 - [i4]Sjoerd van Steenkiste, Michael Chang, Klaus Greff, Jürgen Schmidhuber:
Relational Neural Expectation Maximization: Unsupervised Discovery of Objects and their Interactions. CoRR abs/1802.10353 (2018) - [i3]Sjoerd van Steenkiste, Karol Kurach, Sylvain Gelly:
A Case for Object Compositionality in Deep Generative Models of Images. CoRR abs/1810.10340 (2018) - [i2]Thomas Unterthiner, Sjoerd van Steenkiste, Karol Kurach, Raphaël Marinier, Marcin Michalski, Sylvain Gelly:
Towards Accurate Generative Models of Video: A New Metric & Challenges. CoRR abs/1812.01717 (2018) - 2017
- [c3]Klaus Greff, Sjoerd van Steenkiste, Jürgen Schmidhuber:
Neural Expectation Maximization. ICLR (Workshop) 2017 - [c2]Klaus Greff, Sjoerd van Steenkiste, Jürgen Schmidhuber:
Neural Expectation Maximization. NIPS 2017: 6691-6701 - [i1]Klaus Greff, Sjoerd van Steenkiste, Jürgen Schmidhuber:
Neural Expectation Maximization. CoRR abs/1708.03498 (2017) - 2016
- [c1]Sjoerd van Steenkiste, Jan Koutník, Kurt Driessens, Jürgen Schmidhuber:
A Wavelet-based Encoding for Neuroevolution. GECCO 2016: 517-524
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-15 19:31 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint