default search action
Benjamin Nachman
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j5]C. Allaire, R. Ammendola, E.-C. Aschenauer, M. Balandat, Marco Battaglieri, J. C. Bernauer, M. Bondì, N. Branson, T. Britton, Anja Butter, I. Chahrour, P. Chatagnon, Evaristo Cisbani, E. W. Cline, S. Dash, C. T. Dean, W. Deconinck, A. Deshpande, Markus Diefenthaler, R. Ent, Cristiano Fanelli, M. Finger, E. Fol, S. Furletov, Y. Gao, James Giroux, N. C. Gunawardhana Waduge, O. Hassan, P. L. Hegde, Roger José Hernández-Pinto, Astrid N. Hiller Blin, Tanja Horn, J. Huang, A. Jalotra, D. Jayakodige, B. Joo, M. Junaid, N. Kalantarians, Piyush Karande, B. Kriesten, R. Kunnawalkam Elayavalli, Y. Li, M. Lin, Frank Liu, S. Liuti, G. Matousek, Matthew McEneaney, Diana McSpadden, T. Menzo, T. Miceli, Vinicius Mikuni, R. Montgomery, Benjamin Nachman, R. R. Nair, J. Niestroy, S. A. Ochoa Oregon, J. Oleniacz, J. D. Osborn, C. Paudel, C. Pecar, C. Peng, Gabriel N. Perdue, W. Phelps, Martin L. Purschke, H. Rajendran, K. Rajput, Y. Ren, David Francisco Rentería-Estrada, D. Richford, B. J. Roy, D. Roy, A. Saini, Nobuo Sato, T. Satogata, German Sborlini, Malachi Schram, David Shih, J. Singh, R. Singh, Andrzej Siódmok, J. Stevens, P. Stone, L. Suarez, K. Suresh, Abdel Nasser Tawfik, Fernando Torales Acosta, N. Tran, R. Trotta, F. J. Twagirayezu, R. Tyson, S. Volkova, Anselm Vossen, Eric Walter, Daniel Whiteson, Michael Williams, S. Wu, N. Zachariou, P. Zurita:
Artificial Intelligence for the Electron Ion Collider (AI4EIC). Comput. Softw. Big Sci. 8(1): 5 (2024) - [i27]Nathan Huetsch, Javier Mariño Villadamigo, Alexander Shmakov, Sascha Diefenbacher, Vinicius Mikuni, Theo Heimel, Michael James Fenton, Kevin Greif, Benjamin Nachman, Daniel Whiteson, Anja Butter, Tilman Plehn:
The Landscape of Unfolding with Machine Learning. CoRR abs/2404.18807 (2024) - [i26]Wahid Bhimji, Paolo Calafiura, Ragansu Chakkappai, Yuan-Tang Chou, Sascha Diefenbacher, Jordan Dudley, Steven Farrell, Aishik Ghosh, Isabelle Guyon, Chris Harris, Shih-Chieh Hsu, Elham E Khoda, Rémy Lyscar, Alexandre Michon, Benjamin Nachman, Peter Nugent, Mathis Reymond, David Rousseau, Benjamin Sluijter, Benjamin Thorne, Ihsan Ullah, Yulei Zhang:
FAIR Universe HiggsML Uncertainty Challenge Competition. CoRR abs/2410.02867 (2024) - [i25]Claudius Krause, Michele Faucci Giannelli, Gregor Kasieczka, Benjamin Nachman, Dalila Salamani, David Shih, Anna Zaborowska, Oz Amram, Kerstin Borras, Matthew R. Buckley, Erik Buhmann, Thorsten Buss, Renato Paulo Da Costa Cardoso, Anthony L. Caterini, Nadezda Chernyavskaya, Federico A. G. Corchia, Jesse C. Cresswell, Sascha Diefenbacher, Etienne Dreyer, Vijay Ekambaram, Engin Eren, Florian Ernst, Luigi Favaro, Matteo Franchini, Frank Gaede, Eilam Gross, Shih-Chieh Hsu, Kristina Jaruskova, Benno Käch, Jayant Kalagnanam, Raghav Kansal, Taewoo Kim, Dmitrii Kobylianskii, Anatolii Korol, William Korcari, Dirk Krücker, Katja Krüger, Marco Letizia, Shu Li, Qibin Liu, Xiulong Liu, Gabriel Loaiza-Ganem, Thandikire Madula, Peter McKeown, Isabell-A. Melzer-Pellmann, Vinicius Mikuni, Nam Nguyen, Ayodele Ore, Sofia Palacios Schweitzer, Ian Pang, Kevin Pedro, Tilman Plehn, Witold Pokorski, Huilin Qu, Piyush Raikwar, John A. Raine, Humberto Reyes-González, Lorenzo Rinaldi, Brendan Leigh Ross, Moritz A. W. Scham, Simon Schnake, Chase Shimmin, Eli Shlizerman, Nathalie Soybelman, Mudhakar Srivatsa, Kalliopi Tsolaki, Sofia Vallecorsa, Kyongmin Yeo, Rui Zhang:
CaloChallenge 2022: A Community Challenge for Fast Calorimeter Simulation. CoRR abs/2410.21611 (2024) - 2023
- [i24]Mariel Pettee, Sowmya Thanvantri, Benjamin Nachman, David Shih, Matthew R. Buckley, Jack H. Collins:
Weakly-Supervised Anomaly Detection in the Milky Way. CoRR abs/2305.03761 (2023) - [i23]Vinicius Mikuni, Benjamin Nachman:
High-dimensional and Permutation Invariant Anomaly Detection. CoRR abs/2306.03933 (2023) - [i22]Fernando Torales Acosta, Vinicius Mikuni, Benjamin Nachman, Miguel Arratia, Bishnu Karki, Ryan Milton, Piyush Karande, Aaron Angerami:
Comparison of Point Cloud and Image-based Models for Calorimeter Fast Simulation. CoRR abs/2307.04780 (2023) - [i21]C. Allaire, R. Ammendola, E.-C. Aschenauer, M. Balandat, Marco Battaglieri, J. C. Bernauer, M. Bondì, N. Branson, Thomas Britton, Anja Butter, I. Chahrour, P. Chatagnon, Evaristo Cisbani, E. W. Cline, S. Dash, C. T. Dean, W. Deconinck, A. Deshpande, Markus Diefenthaler, R. Ent, Cristiano Fanelli, M. Finger, M. Finger Jr., E. Fol, S. Furletov, Yuan Gao, James Giroux, N. C. Gunawardhana Waduge, R. Harish, O. Hassan, P. L. Hegde, Roger José Hernández-Pinto, Astrid N. Hiller Blin, Tanja Horn, J. Huang, D. Jayakodige, B. Joo, M. Junaid, Piyush Karande, B. Kriesten, R. Kunnawalkam Elayavalli, M. Lin, Frank Liu, S. Liuti, G. Matousek, Matthew McEneaney, Diana McSpadden, T. Menzo, T. Miceli, Vinicius Mikuni, R. Montgomery, Benjamin Nachman, R. R. Nair, J. Niestroy, S. A. Ochoa Oregon, J. Oleniacz, J. D. Osborn, C. Paudel, C. Pecar, C. Peng, Gabriel N. Perdue, W. Phelps, Martin L. Purschke, K. Rajput, Y. Ren, David Francisco Rentería-Estrada, D. Richford, B. J. Roy, D. Roy, Nobuo Sato, T. Satogata, German Sborlini, Malachi Schram, David Shih, J. Singh, R. Singh, Andrzej Siódmok, P. Stone, J. Stevens, L. Suarez, K. Suresh, Abdel Nasser Tawfik, Fernando Torales Acosta, N. Tran, R. Trotta, F. J. Twagirayezu, R. Tyson, S. Volkova, Anselm Vossen, Eric Walter, Daniel Whiteson, Michael Williams, S. Wu, N. Zachariou, P. Zurita:
Artificial Intelligence for the Electron Ion Collider (AI4EIC). CoRR abs/2307.08593 (2023) - [i20]Sascha Diefenbacher, Guan-Horng Liu, Vinicius Mikuni, Benjamin Nachman, Weili Nie:
Improving Generative Model-based Unfolding with Schrödinger Bridges. CoRR abs/2308.12351 (2023) - [i19]Tobias Golling, Samuel Klein, Radha Mastandrea, Benjamin Nachman, John Andrew Raine:
Flows for Flows: Morphing one Dataset into another with Maximum Likelihood Estimation. CoRR abs/2309.06472 (2023) - [i18]Fernando Torales Acosta, Bishnu Karki, Piyush Karande, Aaron Angerami, Miguel Arratia, Kenneth Barish, Ryan Milton, Sebastián Morán, Benjamin Nachman, Anshuman Sinha:
The Optimal use of Segmentation for Sampling Calorimeters. CoRR abs/2310.04442 (2023) - [i17]Owen Long, Benjamin Nachman:
Designing Observables for Measurements with Deep Learning. CoRR abs/2310.08717 (2023) - 2022
- [j4]Benjamin Nachman:
When, Where, and How to Open Data: a Personal Perspective. Comput. Softw. Big Sci. 6(1): 17 (2022) - [j3]Wonho Jang, Koji Terashi, Masahiko Saito, Christian W. Bauer, Benjamin Nachman, Yutaro Iiyama, Ryunosuke Okubo, Ryu Sawada:
Initial-State Dependent Optimization of Controlled Gate Operations with Quantum Computer. Quantum 6: 798 (2022) - [i16]Andreas Adelmann, Walter Hopkins, Evangelos Kourlitis, Michael Kagan, Gregor Kasieczka, Claudius Krause, David Shih, Vinicius Mikuni, Benjamin Nachman, Kevin Pedro, Daniel Winklehner:
New directions for surrogate models and differentiable programming for High Energy Physics detector simulation. CoRR abs/2203.08806 (2022) - [i15]Kingman Cheung, Yi-Lun Chung, Shih-Chieh Hsu, Benjamin Nachman:
Exploring the Universality of Hadronic Jet Classification. CoRR abs/2204.03812 (2022) - [i14]Vinicius Mikuni, Benjamin Nachman:
Score-based Generative Models for Calorimeter Shower Simulation. CoRR abs/2206.11898 (2022) - [i13]Jack H. Collins, Yifeng Huang, Simon Knapen, Benjamin Nachman, Daniel Whiteson:
Machine-Learning Compression for Particle Physics Discoveries. CoRR abs/2210.11489 (2022) - [i12]Mayee F. Chen, Benjamin Nachman, Frederic Sala:
Resonant Anomaly Detection with Multiple Reference Datasets. CoRR abs/2212.10579 (2022) - 2021
- [i11]Matthew Feickert, Benjamin Nachman:
A Living Review of Machine Learning for Particle Physics. CoRR abs/2102.02770 (2021) - [i10]Anders Andreassen, Patrick T. Komiske, Eric M. Metodiev, Benjamin Nachman, Adi Suresh, Jesse Thaler:
Scaffolding Simulations with Deep Learning for High-dimensional Deconvolution. CoRR abs/2105.04448 (2021) - [i9]Ramon Winterhalder, Marco Bellagente, Benjamin Nachman:
Latent Space Refinement for Deep Generative Models. CoRR abs/2106.00792 (2021) - [i8]Gregor Kasieczka, Benjamin Nachman, David Shih:
New Methods and Datasets for Group Anomaly Detection From Fundamental Physics. CoRR abs/2107.02821 (2021) - [i7]Aishik Ghosh, Benjamin Nachman:
A Cautionary Tale of Decorrelating Theory Uncertainties. CoRR abs/2109.08159 (2021) - [i6]Vinicius Mikuni, Benjamin Nachman, David Shih:
Online-compatible Unsupervised Non-resonant Anomaly Detection. CoRR abs/2111.06417 (2021) - [i5]Luca Pion-Tonachini, Kristofer E. Bouchard, Héctor García Martín, Sean Peisert, W. Bradley Holtz, Anil Aswani, Dipankar Dwivedi, Haruko M. Wainwright, Ghanshyam Pilania, Benjamin Nachman, Babetta L. Marrone, Nicola Falco, Prabhat, Daniel B. Arnold, Alejandro Wolf-Yadlin, Sarah Powers, Sharlee Climer, Quinn Jackson, Ty Carlson, Michael Sohn, Petrus H. Zwart, Neeraj Kumar, Amy Justice, Claire J. Tomlin, Daniel A. Jacobson, Gos Micklem, Georgios V. Gkoutos, Peter J. Bickel, Jean-Baptiste Cazier, Juliane Müller, Bobbie-Jo Webb-Robertson, Rick Stevens, Mark Anderson, Kenneth Kreutz-Delgado, Michael W. Mahoney, James B. Brown:
Learning from learning machines: a new generation of AI technology to meet the needs of science. CoRR abs/2111.13786 (2021)
2010 – 2019
- 2019
- [i4]Benjamin Nachman, Chase Shimmin:
AI Safety for High Energy Physics. CoRR abs/1910.08606 (2019) - 2017
- [j2]Luke de Oliveira, Michela Paganini, Benjamin Nachman:
Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics Synthesis. Comput. Softw. Big Sci. 1(1) (2017) - [i3]Luke de Oliveira, Michela Paganini, Benjamin Nachman:
Controlling Physical Attributes in GAN-Accelerated Simulation of Electromagnetic Calorimeters. CoRR abs/1711.08813 (2017) - [i2]Michela Paganini, Luke de Oliveira, Benjamin Nachman:
CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with Generative Adversarial Networks. CoRR abs/1712.10321 (2017) - 2016
- [j1]Hyeji Kim, Benjamin Nachman, Abbas El Gamal:
Superposition Coding Is Almost Always Optimal for the Poisson Broadcast Channel. IEEE Trans. Inf. Theory 62(4): 1782-1794 (2016) - 2015
- [c1]Hyeji Kim, Benjamin Nachman, Abbas El Gamal:
Superposition coding is almost always optimal for the Poisson broadcast channel. ISIT 2015: 834-838 - [i1]Hyeji Kim, Benjamin Nachman, Abbas El Gamal:
Superposition Coding is Almost Always Optimal for the Poisson Broadcast Channel. CoRR abs/1508.04228 (2015)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-03 20:31 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint