default search action
Patrick Zschech
Person information
- affiliation: Leipzig University, Germany
- affiliation (former): University of Erlangen-Nuremberg, Germany
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j16]Stefan Feuerriegel, Jochen Hartmann, Christian Janiesch, Patrick Zschech:
Generative AI. Bus. Inf. Syst. Eng. 66(1): 111-126 (2024) - [j15]Mathias Kraus, Daniel Tschernutter, Sven Weinzierl, Patrick Zschech:
Interpretable generalized additive neural networks. Eur. J. Oper. Res. 317(2): 303-316 (2024) - [j14]Moritz Drobnitzky, Jonas Friederich, Bernhard Egger, Patrick Zschech:
Survey and systematization of 3D object detection models and methods. Vis. Comput. 40(3): 1867-1913 (2024) - [c25]Theodor Felix Stoecker, Nico Hambauer, Patrick Zschech, Mathias Kraus:
IGANN Sparse: Bridging Sparsity and Interpretability with Non-Linear Insight. ECIS 2024 - [c24]Sven Weinzierl, Sandra Zilker, Patrick Zschech, Mathias Kraus, Tobias Leibelt, Martin Matzner:
How Risky is my AI System? A Method for Transparent Classification of AI System Descriptions by Regulated AI Risk Categories. ICIS 2024 - [i14]Theodor Stoecker, Nico Hambauer, Patrick Zschech, Mathias Kraus:
IGANN Sparse: Bridging Sparsity and Interpretability with Non-linear Insight. CoRR abs/2403.11363 (2024) - [i13]Sandra Zilker, Sven Weinzierl, Mathias Kraus, Patrick Zschech, Martin Matzner:
A machine learning framework for interpretable predictions in patient pathways: The case of predicting ICU admission for patients with symptoms of sepsis. CoRR abs/2405.13187 (2024) - [i12]Sven Kruschel, Nico Hambauer, Sven Weinzierl, Sandra Zilker, Mathias Kraus, Patrick Zschech:
Challenging the Performance-Interpretability Trade-off: An Evaluation of Interpretable Machine Learning Models. CoRR abs/2409.14429 (2024) - [i11]Sven Kruschel, Lasse Bohlen, Julian Rosenberger, Patrick Zschech, Mathias Kraus:
Quantifying Visual Properties of GAM Shape Plots: Impact on Perceived Cognitive Load and Interpretability. CoRR abs/2409.16870 (2024) - 2023
- [j13]Justus Zipfel, Felix Verworner, Marco Fischer, Uwe Wieland, Mathias Kraus, Patrick Zschech:
Anomaly detection for industrial quality assurance: A comparative evaluation of unsupervised deep learning models. Comput. Ind. Eng. 177: 109045 (2023) - [j12]Patrick Zschech:
Beyond descriptive taxonomies in data analytics: a systematic evaluation approach for data-driven method pipelines. Inf. Syst. E Bus. Manag. 21(1): 193-227 (2023) - [c23]Christopher Wissuchek, Patrick Zschech:
Survey and Systematization of Prescriptive Analytics Systems: Towards Archetypes from a Human-Machine-Collaboration Perspective. ECIS 2023 - [c22]Sandra Zilker, Sven Weinzierl, Patrick Zschech, Mathias Kraus, Martin Matzner:
Best of Both Worlds: Combining Predictive Power with Interpretable and Explainable Results for Patient Pathway Prediction. ECIS 2023 - [i10]Stefan Feuerriegel, Jochen Hartmann, Christian Janiesch, Patrick Zschech:
Generative AI. CoRR abs/2309.07930 (2023) - 2022
- [j11]Philipp Siebers, Christian Janiesch, Patrick Zschech:
A Survey of Text Representation Methods and Their Genealogy. IEEE Access 10: 96492-96513 (2022) - [j10]Thorsten Schoormann, Gero Strobel, Frederik Möller, Dimitri Petrik, Patrick Zschech:
Artificial Intelligence for Sustainability - A Systematic Review of Information Systems Literature. Commun. Assoc. Inf. Syst. 52: 8 (2022) - [c21]Johannes Graf, Gino Lancho, Patrick Zschech, Kai Heinrich:
Where was COVID-19 first discovered? Designing a question-answering system for pandemic situations. ECIS 2022 - [c20]Patrick Zschech, Sven Weinzierl, Nico Hambauer, Sandra Zilker, Mathias Kraus:
GAM(e) changer or not? An evaluation of interpretable machine learning models based on additive model constraints. ECIS 2022 - [c19]Maximilian V. Harl, Marvin Herchenbach, Sven Kruschel, Nico Hambauer, Patrick Zschech, Mathias Kraus:
A Light in the Dark: Deep Learning Practices for Industrial Computer Vision. Wirtschaftsinformatik 2022 - [i9]Maximilian Harl, Marvin Herchenbach, Sven Kruschel, Nico Hambauer, Patrick Zschech, Mathias Kraus:
A Light in the Dark: Deep Learning Practices for Industrial Computer Vision. CoRR abs/2201.02028 (2022) - [i8]Moritz Drobnitzky, Jonas Friederich, Bernhard Egger, Patrick Zschech:
Survey and Systematization of 3D Object Detection Models and Methods. CoRR abs/2201.09354 (2022) - [i7]Johannes Graf, Gino Lancho, Patrick Zschech, Kai Heinrich:
Where Was COVID-19 First Discovered? Designing a Question-Answering System for Pandemic Situations. CoRR abs/2204.08787 (2022) - [i6]Patrick Zschech, Sven Weinzierl, Nico Hambauer, Sandra Zilker, Mathias Kraus:
GAM(e) changer or not? An evaluation of interpretable machine learning models based on additive model constraints. CoRR abs/2204.09123 (2022) - [i5]Philipp Siebers, Christian Janiesch, Patrick Zschech:
A Survey of Text Representation Methods and Their Genealogy. CoRR abs/2211.14591 (2022) - 2021
- [j9]Kai Heinrich, Patrick Zschech, Christian Janiesch, Markus Bonin:
Process data properties matter: Introducing gated convolutional neural networks (GCNN) and key-value-predict attention networks (KVP) for next event prediction with deep learning. Decis. Support Syst. 143: 113494 (2021) - [j8]Christian Janiesch, Patrick Zschech, Kai Heinrich:
Machine learning and deep learning. Electron. Mark. 31(3): 685-695 (2021) - [j7]Patrick Zschech, Christoph Sager, Philipp Siebers, Maik Pertermann:
Mit Computer Vision zur automatisierten Qualitätssicherung in der industriellen Fertigung: Eine Fallstudie zur Klassifizierung von Fehlern in Solarzellen mittels Elektrolumineszenz-Bildern. HMD Prax. Wirtsch. 58(2): 321-342 (2021) - [c18]Patrick Zschech, Jannis Walk, Kai Heinrich, Michael Vössing, Niklas Kühl:
A Picture is Worth a Collaboration: Accumulating Design Knowledge for Computer-Vision-based Hybrid Intelligence Systems. ECIS 2021 - [c17]Dimitri Petrik, Katharina Pantow, Patrick Zschech, Georg Herzwurm:
Tweeting in IIoT Ecosystems - Empirical Insights from Social Media Analytics about IIoT Platforms. Software Management 2021: 21-38 - [c16]Dimitri Petrik, Katharina Pantow, Patrick Zschech, Georg Herzwurm:
Tweeting in IIoT Ecosystems - Empirical Insights from Social Media Analytics about IIoT Platforms. Wirtschaftsinformatik 2021 - [i4]Christoph Sager, Patrick Zschech, Niklas Kühl:
labelCloud: A Lightweight Domain-Independent Labeling Tool for 3D Object Detection in Point Clouds. CoRR abs/2103.04970 (2021) - [i3]Christian Janiesch, Patrick Zschech, Kai Heinrich:
Machine learning and deep learning. CoRR abs/2104.05314 (2021) - [i2]Christoph Sager, Christian Janiesch, Patrick Zschech:
A survey of image labelling for computer vision applications. CoRR abs/2104.08885 (2021) - [i1]Patrick Zschech, Jannis Walk, Kai Heinrich, Michael Vössing, Niklas Kühl:
A Picture is Worth a Collaboration: Accumulating Design Knowledge for Computer-Vision-based Hybrid Intelligence Systems. CoRR abs/2104.11600 (2021) - 2020
- [j6]Patrick Zschech, Richard Horn, Daniel Höschele, Christian Janiesch, Kai Heinrich:
Intelligent User Assistance for Automated Data Mining Method Selection. Bus. Inf. Syst. Eng. 62(3): 227-247 (2020) - [c15]Kai Heinrich, Johannes Graf, Ji Chen, Jakob Laurisch, Patrick Zschech:
Fool me Once, shame on You, Fool me Twice, shame on me: a Taxonomy of Attack and de-Fense Patterns for AI Security. ECIS 2020 - [c14]Jonas Wanner, Lukas-Valentin Herm, Kai Heinrich, Christian Janiesch, Patrick Zschech:
White, Grey, Black: Effects of XAI Augmentation on the Confidence in AI-based Decision Support Systems. ICIS 2020 - [c13]Jonas Wanner, Kai Heinrich, Christian Janiesch, Patrick Zschech:
How Much AI Do You Require? Decision Factors for Adopting AI Technology. ICIS 2020 - [c12]Kai Heinrich, Patrick Zschech, Christian Janiesch, Markus Bonin:
Ein Vergleich aktueller Deep-Learning-Architekturen zur Prognose von Prozessverhalten. Wirtschaftsinformatik (Zentrale Tracks) 2020: 876-892 - [c11]Jonas Friederich, Patrick Zschech:
Review and Systematization of Solutions for 3D Object Detection. Wirtschaftsinformatik (Zentrale Tracks) 2020: 1699-1711
2010 – 2019
- 2019
- [j5]Patrick Zschech, Kai Heinrich, Raphael Bink, Janis S. Neufeld:
Prognostic Model Development with Missing Labels - A Condition-Based Maintenance Approach Using Machine Learning. Bus. Inf. Syst. Eng. 61(3): 327-343 (2019) - [j4]Kai Heinrich, Patrick Zschech, Björn Möller, Lukas Breithaupt, Johannes Maresch:
Objekterkennung im Weinanbau - Eine Fallstudie zur Unterstützung von Winzertätigkeiten mithilfe von Deep Learning. HMD Prax. Wirtsch. 56(5): 964-985 (2019) - [c10]Kai Heinrich, Patrick Zschech, Tarek Skouti, Jakob Griebenow, Sebastian Riechert:
Demystifying the Black Box: A Classification Scheme for Interpretation and Visualization of Deep Intelligent Systems. AMCIS 2019 - [c9]Patrick Zschech, Kai Heinrich, Richard Horn, Daniel Höschele:
Towards a Text-based Recommender System for Data Mining Method Selection. AMCIS 2019 - [c8]Kai Heinrich, Andreas Roth, Patrick Zschech:
Everything counts: a Taxonomy of Deep Learning Approaches for Object Counting. ECIS 2019 - [c7]Patrick Zschech, Jonas Bernien, Kai Heinrich:
Towards a Taxonomic Benchmarking Framework for Predictive Maintenance: The Case of NASA's Turbofan Degradation. ICIS 2019 - [c6]Richard Horn, Patrick Zschech:
Application of Process Mining Techniques to Support Maintenance-Related Objectives. Wirtschaftsinformatik 2019: 1856-1867 - 2018
- [j3]Patrick Zschech, Vera Fleißner, Nicole Baumgärtel, Andreas Hilbert:
Data Science Skills and Enabling Enterprise Systems. HMD Prax. Wirtsch. 55(1): 163-181 (2018) - [j2]Raphael Bink, Patrick Zschech:
Predictive Maintenance in der industriellen Praxis. HMD Prax. Wirtsch. 55(3): 552-565 (2018) - [c5]Michael Könning, Kai Heinrich, Patrick Zschech, Christian Leyh:
Analyzing Influences on Pivotal ITO Contract Features: A Quantitative Multi-Study Design with Evidence from Western Europe. AMCIS 2018 - [c4]Karolin Stefani, Patrick Zschech:
Constituent Elements for Prescriptive Analytics Systems. ECIS 2018: 39 - [c3]Patrick Zschech:
A Taxonomy of Recurring Data Analysis Problems in Maintenance Analytics. ECIS 2018: 197 - 2017
- [c2]Patrick Zschech, Kai Heinrich, Marcus Pfitzner, Andreas Hilbert:
Are You up for the Challenge? Towards the Development of a Big Data Capability Assessment Model. ECIS 2017 - 2016
- [j1]Conny Schumann, Patrick Zschech, Andreas Hilbert:
Das aufstrebende Berufsbild des Data Scientist. HMD Prax. Wirtsch. 53(4): 453-466 (2016) - 2014
- [c1]Paul Kruse, Christian Kummer, Patrick Zschech:
Existieren Wissensmanagement-Schulen? Eine Clusteranalyse von Wissensmanagement-Beiträgen aus den letzten 10 Jahren. GeNeMe 2014: 17-32
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-21 20:30 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint