default search action
29th TREC 2020: Virtual Event / Gaithersburg, MD, USA
- Ellen M. Voorhees, Angela Ellis:
Proceedings of the Twenty-Ninth Text REtrieval Conference, TREC 2020, Virtual Event [Gaithersburg, Maryland, USA], November 16-20, 2020. NIST Special Publication 1266, National Institute of Standards and Technology (NIST) 2020
Overview Papers
- Jeffrey Dalton, Chenyan Xiong, Jamie Callan:
CAsT 2020: The Conversational Assistance Track Overview. - Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos:
Overview of the TREC 2020 Deep Learning Track. - Charles L. A. Clarke, Saira Rizvi, Mark D. Smucker, Maria Maistro, Guido Zuccon:
Overview of the TREC 2020 Health Misinformation Track. - Cody Buntain, Richard McCreadie, Ian Soboroff:
Incident Streams 2020: TRECIS in the Time of COVID-19. - Ian Soboroff, Shudong Huang, Donna Harman:
TREC 2020 News Track Overview. - Rosie Jones, Ben Carterette, Ann Clifton, Jussi Karlgren, Aasish Pappu, Sravana Reddy, Yongze Yu, Maria Eskevich, Gareth J. F. Jones:
TREC 2020 Podcasts Track Overview. - Kirk Roberts, Dina Demner-Fushman, Ellen M. Voorhees, Steven Bedrick, William R. Hersh:
Overview of the TREC 2020 Precision Medicine Track.
Participant Papers
- Qiao Jin, Chuanqi Tan, Mosha Chen, Ming Yan, Songfang Huang, Ningyu Zhang, Xiaozhong Liu:
Aliababa DAMO Academy at TREC Precision Medicine 2020: State-of-the-art Evidence Retriever for Precision Medicine with Expert-in-the-loop Active Learning. - Chia-Yuan Chang, Ning Chen, Wei-Ting Chiang, Chih-Hen Lee, Yu-Hsuan Tseng, Chuan-Ju Wang, Hsien-Hao Chen, Ming-Feng Tsai:
Query Expansion with Semantic-Based Ellipsis Reduction for Conversational IR. - Tiago Melo Almeida, Sérgio Matos:
2020 Deep Learning Track. - Tiago Melo Almeida, Sérgio Matos:
BIT.UA@TREC 2020 Precision Medicine Track. - Julien Knafou, Matthew Jeffryes, Sohrab Ferdowsi, Patrick Ruch:
SIB Text Mining at TREC 2020 Deep Learning Track. - Emilie Pasche, Déborah Caucheteur, Luc Mottin, Anaïs Mottaz, Julien Gobeill, Patrick Ruch:
SIB Text Mining at TREC Precision Medicine 2020. - Hesong Wang, Zhen Yang:
BJUT at TREC 2020 Incident Streams Track. - Piyush Sahu, Hoang Vu, Danny T. Y. Wu:
Retrieving Scientific Abstracts using Medical Concepts and Learning to Rank: CincyMedIR at TREC 2020 Precision Medicine Track. - Marcos Fernández-Pichel, David E. Losada, Juan Carlos Pichel, David Elsweiler:
CiTIUS at the TREC 2020 Health Misinformation Track. - Pavel Khloponin, Leila Kosseim:
The CLaC System at the TREC 2020 News Track. - Maciej Rybinski, Sarvnaz Karimi:
CSIROmed at TREC Precision Medicine 2020. - Potsawee Manakul, Mark J. F. Gales:
CUED_SPEECH at TREC 2020 Podcast Summarisation Track. - Yasufumi Moriya, Gareth J. F. Jones:
DCU-ADAPT at the TREC 2020 Podcasts Track. - Michalis Fotiadis, Georgios Peikos, Symeon Symeonidis, Avi Arampatzis:
DUTh at TREC 2020 Conversational Assistance Track. - Carlos Gemmell, Jeffrey Dalton:
Glasgow Representation and Information Learning Lab (GRILL) at the Conversational Assistance Track 2020. - Sheng-Chieh Lin, Jheng-Hong Yang, Jimmy Lin:
TREC 2020 Notebook: CAsT Track. - Ronak Pradeep, Xueguang Ma, Xinyu Zhang, Hang Cui, Ruizhou Xu, Rodrigo Frassetto Nogueira, Jimmy Lin:
H2oloo at TREC 2020: When all you got is a hammer... Deep Learning, Health Misinformation, and Precision Medicine. - Haya Al-Thani, Bernard J. Jansen, Tamer Elsayed:
HBKU at TREC 2020: Conversational Multi-Stage Retrieval with Pseudo-Relevance Feedback. - Hannes Karlbom, Ann Clifton:
Abstract Podcast Summarization using BART with Longformer Attention. - Ida Mele, Cristina Ioana Muntean, Franco Maria Nardini, Raffaele Perego, Nicola Tonellotto:
Topical Enrichment of Conversational Search Utterances: Participation of the HPCLab-CNR Team in CAsT 2020. - Marco Wrzalik, Dirk Krechel:
HSRM-LAVIS at TREC 2020 Deep Learning Track: Neural First-stage Ranking Complementing Term-based Retrieval. - Xuanang Chen, Ben He, Le Sun, Yingfei Sun:
ICIP at TREC-2020 Deep Learning Track. - Sebastian Cross, Hang Li, Arvin Zhuang, Ahmed Mourad, Guido Zuccon, Bevan Koopman:
IELAB for TREC Conversational Assistance Track (CAsT) 2020. - Giorgio Maria Di Nunzio, Stefano Marchesin:
A Study on Query Expansion and Rank Fusion for Precision Medicine: The IMS Unipd at TREC 2020 Precision Medicine. - Yunhe Feng, Daniel Saelid, Ke Li, Chirag Shah, Ruoyuan Gao:
University of Washington at TREC 2020 Fairness Ranking Track. - Rahul Gautam, Mandar Mitra, Dwaipayan Roy:
TREC 2020 NEWS Track Background Linking Task. - Lucas Chaves Lima, Dustin Brandon Wright, Isabelle Augenstein, Maria Maistro:
University of Copenhagen Participation in TREC Health Misinformation Track 2020. - Abheesht Sharma, Harshit Pandey:
LRG at TREC 2020: Document Ranking with XLNet-Based Models. - Brian Almquist:
MacEwan University at the TREC 2020 Fair Ranking Track. - Canjia Li, Andrew Yates:
MPII at the TREC 2020 Deep Learning Track. - Maura R. Grossman, Gordon V. Cormack, Ba' Pham:
MRG_UWaterloo Participation in the TREC 2020 Precision Medicine Track. - Bhaskar Mitra, Sebastian Hofstätter, Hamed Zamani, Nick Craswell:
Conformer-Kernel with Query Term Independence at TREC 2020 Deep Learning Track. - Andres Ferraro, Lorenzo Porcaro, Xavier Serra:
Balancing Exposure and Relevance in Academic Search. - Shivam Sharma, Cody Buntain:
Improving Classification of Crisis-Related Social Media Content via Text Augmentation and Image Analysis. - Thibault Formal, Benjamin Piwowarski, Stéphane Clinchant:
Naver Labs Europe @ TREC Deep Learning 2020. - Till Kletti:
Naver Labs Europe at TREC 2020 Fair Ranking Track. - Yassine Mrabet, Mourad Sarrouti, Asma Ben Abacha, Soumya Gayen, Travis R. Goodwin, Alastair R. Rae, Willie Rogers, Dina Demner-Fushman:
NLM at TREC 2020 Health Misinformation and Deep Learning Tracks. - Rafael Ferreira, David Semedo, João Magalhães:
NOVA at TREC 2020 Conversational Assistance Track. - Nathan Day, Dan Worley, Tim Allison:
OSC at TREC 2020 - News track's Background Linking Task. - Yixuan Qiao, Hao Chen, Liyu Cao, Liping Chen, Pengyong Li, Jun Wang, Peng Gao, Yuan Ni, Guotong Xie:
PASH at TREC 2020 Deep Learning Track: Dense Matching for Nested Ranking. - Liyu Cao, Yixuan Qiao, Hao Chen, Peng Gao, Yuan Ni, Guo Tong Xie:
A Multiple Models Ensembling Method in TREC Deep Learning. - Kaishuai Xu, Wenjie Li, Yongli Li:
POLYU at TREC 2020 Conversational Assistant Track: Query Reformulation with Heuristic Topic Phrases Discovery. - Jakub Dutkiewicz, Czeslaw Jedrzejek:
Poznań Contribution to TREC-PM 2020. - Fatima Haouari, Marwa Essam, Tamer Elsayed:
bigIR at TREC 2020: Simple but Deep Retrieval of Passages and Documents. - Sijie Tao, Tetsuya Sakai:
RealSakaiLab at the TREC 2020 Health Misinformation Track. - J. Shane Culpepper, Binsheng Liu:
RMIT at TREC Deep Learning Track 2020. - Pepijn Boers, Chris Kamphuis, Arjen P. de Vries:
Radboud University at TREC 2020. - Yongze Yu, Jussi Karlgren, Ann Clifton, Md. Iftekhar Tanveer, Rosie Jones, Hamed R. Bonab:
Spotify at the TREC 2020 Podcasts Track: Segment Retrieval. - Rezvaneh Rezapour, Sravana Reddy, Ann Clifton, Rosie Jones:
Spotify at TREC 2020: Genre-Aware Abstractive Podcast Summarization. - Ali Eren Ak, Çaghan Köksal, Kenan Fayoumi, Reyyan Yeniterzi:
SU-NLP at TREC NEWS 2020. - Sumanta Kashyapi, Laura Dietz:
TREMA-UNH at TREC 2020. - Sebastian Hofstätter, Allan Hanbury:
Evaluating Transformer-Kernel Models at TREC Deep Learning 2020. - Annisa Maulida Ningtyas, Alaa El-Ebshihy, Florina Piroi, Allan Hanbury, Linda Andersson:
TUW-IFS at TREC NEWS 2020 : Wikification Task. - Jaap Kamps, Nikolaos Kondylidis, David Rau:
Impact of Tokenization, Pretraining Task, and Transformer Depth on Text Ranking. - Congcong Wang, David Lillis:
Multi-task Transfer Learning for Finding Actionable Information from Crisis-related Messages on Social Media. - Kaiqiang Song, Fei Liu, Chen Li, Xiaoyang Wang, Dong Yu:
Automatic Summarization of Open-Domain Podcast Episodes. - Kuang Lu, Hui Fang:
Aspect Based Background Document Retrieval for News Articles. - Chujie Zheng, Harry Jiannan Wang, Kunpeng Zhang, Ling Fan:
A Two-Phase Approach for Abstractive Podcast Summarization. - Mahmoud F. Sayed, Douglas W. Oard:
The University of Maryland at the TREC 2020 Fair Ranking Track. - Petra Galuscáková, Suraj Nair, Douglas W. Oard:
Combine and Re-Rank: The University of Maryland at the TREC 2020 Podcasts Track. - Kyle Reed, Harish Tayyar Madabushi:
Faster BERT-based Re-ranking through Candidate Passage Extraction. - Paul Owoicho, Jeff Dalton:
Glasgow Representation and Information Learning Lab (GRILL) at TREC 2020 Podcasts Track. - Xiao Wang, Yaxiong Wu, Xi Wang, Craig Macdonald, Iadh Ounis:
University of Glasgow Terrier Team at the TREC 2020 Deep Learning Track. - Graham McDonald, Iadh Ounis:
University of Glasgow Terrier Team at the TREC 2020 Fair Ranking Track. - Alexander J. Hepburn, Richard McCreadie:
University of Glasgow Terrier Team (uogTr) at the TREC 2020 Incident Streams Track. - Alberto Ueda, Rodrygo L. T. Santos, Craig Macdonald, Iadh Ounis:
University of Glasgow Terrier Team and UFMG at the TREC 2020 Precision Medicine Track. - Ivan Sekulic, Fabio Crestani, Mohammad Aliannejadi:
Extending the Use of Previous Relevant Utterances for Response Ranking in Conversational Search. - Ivan Sekulic, Fabio Crestani, Amir Soleimani, Mohammad Aliannejadi:
Longformer for MS MARCO Document Re-ranking Task. - Svitlana Vakulenko, Nikos Voskarides, Zhucheng Tu, Shayne Longpre:
Leveraging Query Resolution and Reading Comprehension for Conversational Passage Retrieval. - Simao N. Goncalves, Flávio Martins:
VOH.CoLAB at TREC 2020 Health Misinformation Track. - Miguel D. Cardoso, Flávio Martins:
VOH.CoLAB at TREC 2020 Precision Medicine Track. - Negar Arabzadeh, Charles L. A. Clarke:
WaterlooClarke at the Trec 2020 Conversational Assistant Track. - Janek Bevendorff, Michael Völske, Benno Stein, Alexander Bondarenko, Maik Fröbe, Sebastian Günther, Matthias Hagen:
Webis at TREC 2020: Health Misinformation Track Extended Abstract. - Max Niebergall, Jiashu Zhao:
Wilfrid Laurier University at the NIST TREC 2020: Conversational Assistance Track.
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.