default search action
MLCAD 2024: Salt Lake City, UT, USA
- Hussam Amrouch, Jiang Hu, Siddharth Garg, Yibo Lin:
Proceedings of the 2024 ACM/IEEE International Symposium on Machine Learning for CAD, MLCAD 2024, Salt Lake City, UT, USA, September 9-11, 2024. ACM 2024, ISBN 979-8-4007-0699-8 - Lizi Zhang, Azadeh Davoodi:
Efficient and Effective Neural Networks for Automatic Test Pattern Generation. 1:1-1:7 - Yunsheng Bai, Atefeh Sohrabizadeh, Zijian Ding, Rongjian Liang, Weikai Li, Ding Wang, Haoxing Ren, Yizhou Sun, Jason Cong:
Learning to Compare Hardware Designs for High-Level Synthesis. 2:1-2:7 - Jiajie Xu, Ziyue Han, Leilei Jin, Shiyang Wu, Hao Yan, Longxing Shi:
FACT: Fast and Accurate Multi-Corner Predictor for Timing Closure in Commercial EDA Flows. 3:1-3:7 - Pinquan Li, Yunfan Zuo, Yuwei Sun, Hao Yan, Longxing Shi:
ICDaIR: Distribution-aware Static IR Drop Prediction Flow Based on Image Classification. 4:1-4:6 - Ateeb Naseer, Yawar Hayat Zarkob, Musaib Rafiq, Mohammad Sajid Nazir, Owais Ahmad, Amit Agarwal, Somnath Bhowmick, Yogesh Singh Chauhan:
Enhancing the Capabilities of Quantum Transport Simulations Utilizing Machine Learning Strategies. 5:1-5:7 - Shiyu Gao, Keni Qiu:
An ML-aided Approach to Automatically Generate Schematic Symbols in PCB EDA Tools. 6:1-6:7 - Wenjing Jiang, Vidya A. Chhabria, Sachin S. Sapatnekar:
IR-Aware ECO Timing Optimization Using Reinforcement Learning. 7:1-7:7 - Rongjian Liang, Chia-Tung Ho, Anthony Agnesina, Wen-Hao Liu, Haoxing Ren:
ReLS: Retrieval Is Efficient Knowledge Transfer For Logic Synthesis. 8:1-8:7 - Yangfan Jiang, Jianfei Song, Xunzhao Yin, Xiao Dong, Songyu Sun, Yibo Lin, Zhou Jin, Xiaoyu Yang, Cheng Zhuo:
A Parallel Simulation Framework Incorporating Machine Learning-Based Hotspot Detection for Accelerated Power Grid Analysis. 9:1-9:7 - Christopher Batten, Nathaniel Ross Pinckney, Mingjie Liu, Haoxing Ren, Brucek Khailany:
PyHDL-Eval: An LLM Evaluation Framework for Hardware Design Using Python-Embedded DSLs. 10:1-10:17 - Cristhian Roman-Vicharra, Yiran Chen, Jiang Hu:
Flip-Flop Centric Incremental Placement for Simultaneous Timing and Clock Network Power Optimization. 11:1-11:7 - Haiyang He, Norman Chang, Akhilesh Kumar, Jie Yang, Wenbo Xia, Lang Lin, Jessica Yen, Haoliang Jiang, Rishikesh Ranade:
Parallel Per-tile Activation with Linear Superposition of Thermal Response for Solving Arbitrary Power Pattern in 3DIC Thermal Simulation. 12:1-12:7 - Ruisi Zhang, Rachel Selina Rajarathnam, David Z. Pan, Farinaz Koushanfar:
Automated Physical Design Watermarking Leveraging Graph Neural Networks. 13:1-13:10 - Zongyue Qin, Yunsheng Bai, Atefeh Sohrabizadeh, Zijian Ding, Ziniu Hu, Yizhou Sun, Jason Cong:
Cross-Modality Program Representation Learning for Electronic Design Automation with High-Level Synthesis. 14:1-14:12 - Kangwei Xu, Grace Li Zhang, Xunzhao Yin, Cheng Zhuo, Ulf Schlichtmann, Bing Li:
Automated C/C++ Program Repair for High-Level Synthesis via Large Language Models. 15:1-15:9 - Ziqi Wang, Weihan Sun, Zhongxi Guo, Xiao Shi, Longxing Shi:
High-Dimensional Yield Analysis Using Sparse Representation for Long-Tailed Distribution. 16:1-16:7 - Ruchao Fan, Yongming Tang, Hao Sun, Jiyuan Liu, He Li:
An Efficient ML-based Hardware Trojan Localization Framework for RTL Security Analysis. 17:1-17:7 - Ruidi Qiu, Grace Li Zhang, Rolf Drechsler, Ulf Schlichtmann, Bing Li:
AutoBench: Automatic Testbench Generation and Evaluation Using LLMs for HDL Design. 18:1-18:10 - Donggyu Kim, Minjae Kim, Junseok Hur, Jakang Lee, Jinoh Cho, Seokhyeong Kang:
TA3D: Timing-Aware 3D IC Partitioning and Placement by Optimizing the Critical Path. 19:1-19:7 - Bohao Li, Shizhang Wang, Tinghuan Chen, Qi Sun, Cheng Zhuo:
Efficient Subgraph Matching Framework for Fast Subcircuit Identification. 20:1-20:7 - Amin Sarihi, Peter Jamieson, Ahmad Patooghy, Abdel-Hameed A. Badawy:
TrojanForge: Generating Adversarial Hardware Trojan Examples Using Reinforcement Learning. 21:1-21:7 - Utsav Sharma, Bing-Yue Wu, Sai Rahul Dhanvi Kankipati, Vidya A. Chhabria, Austin Rovinski:
OpenROAD-Assistant: An Open-Source Large Language Model for Physical Design Tasks. 22:1-22:7 - Stefan Abi-Karam, Rishov Sarkar, Allison Seigler, Sean Lowe, Zhigang Wei, Hanqiu Chen, Nanditha Rao, Lizy Kurian John, Aman Arora, Cong Hao:
HLSFactory: A Framework Empowering High-Level Synthesis Datasets for Machine Learning and Beyond. 23:1-23:9 - Prianka Sengupta, Aakash Tyagi, Jiang Hu, Vivek K. Rajan, Hesham Mostafa, Somdeb Majumdar:
MinBLoG: Minimization of Boolean Logic Functions using Graph Attention Network. 24:1-24:8 - Jincong Lu, Sheldon X.-D. Tan:
Thermal Map Dataset for Commercial Multi/Many Core CPU/GPU/TPU. 25:1-25:7 - Andre Nakkab, Sai Qian Zhang, Ramesh Karri, Siddharth Garg:
Rome was Not Built in a Single Step: Hierarchical Prompting for LLM-based Chip Design. 26:1-26:11 - Tao Bai, Zeyuan Deng, Peng Cao:
Cell Library Characterization for Composite Current Source Models Based on Gaussian Process Regression and Active Learning. 27:1-27:7 - Prashanth Vijayaraghavan, Apoorva Nitsure, Charles Mackin, Luyao Shi, Stefano Ambrogio, Arvind Haran, Viresh Paruthi, Ali El-Zein, Dan Coops, David Beymer, Tyler Baldwin, Ehsan Degan:
Chain-of-Descriptions: Improving Code LLMs for VHDL Code Generation and Summarization. 28:1-28:10 - Avinash Ayalasomayajula, Rui Guo, Jingbo Zhou, Sujan Kumar Saha, Farimah Farahmandi:
LASP: LLM Assisted Security Property Generation for SoC Verification. 29:1-29:7 - Xuanyi Tan, Peter Domanski, Sanmitra Banerjee, Krishnendu Chakrabarty:
ML-TIME: ML-driven Timing Analysis of Integrated Circuits in the Presence of Process Variations and Aging Effects. 30:1-30:9 - Andrew David Gunter, Maya Thomas, Nikhil Pratap Ghanathe, Steven J. E. Wilton:
Enabling Risk Management of Machine Learning Predictions for FPGA Routability. 31:1-31:9 - Andrew David Gunter, Steven J. E. Wilton:
Machine Learning VLSI CAD Experiments Should Consider Atomic Data Groups. 32:1-32:8 - Ali Hammoud, Chetanya Goyal, Sakib Pathen, Arlene Dai, Anhang Li, Gregory Kielian, Mehdi Saligane:
Human Language to Analog Layout Using GLayout Layout Automation Framework. 33:1-33:7 - Haoyu Yang, Anthony Agnesina, Haoxing Ren:
Optimizing Predictive AI in Physical Design Flows with Mini Pixel Batch Gradient Descent. 34:1-34:7 - Luis Francisco, Srini Arikati:
LLM Based Physical Verification Runset Generator. 35:1-35:7 - Lining Zhang, Baokang Peng, Yu Li, Hengyi Liu, Wu Dai, Runsheng Wang:
When Device Modeling Meets Machine Learning: Opportunities and Challenges (Invited). 36:1-36:6 - Srinivas Jallepalli:
Machine Learning for High Sigma Analog Designs (Invited). 37:1-37:6 - Li-C. Wang:
LLM-Assisted Analytics in Semiconductor Test (Invited). 38:1-38:7 - Michihiro Shintani, Takashi Sato:
(Invited) Redefining Outliers for On-Wafer Electrical Testing. 39:1-39:7
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.