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Abstract

In this paper, we propose a new method to estimate counterfactual distribution func-
tions via the optimal distribution balancing weights, to avoid estimating the inverse
propensity weights, which is sensitive to model specification and easily causes unstable
estimates as well as often fails to adequately balance covariates. First, we demon-
strate that the estimated weights exactly balance the estimated conditional distribu-
tions among the treated, untreated, and combined groups via a well-defined convex
optimization problem. Secondly, we show that the resulting estimator of counterfac-
tual distribution function converges weakly to a mean-zero Gaussian process at the
parametric rate of the squared root n. Additionally, we show that a properly designed
Bootstrap method can be used to obtain confidence intervals for conducting statistical
inferences, together with its theoretical justification. Furthermore, with the estimates
of counterfactual distribution functions, we provide methods to estimate the quantile
treatment effects and test the stochastic dominance relationship between the potential
outcome distributions. Moreover, Monte Carlo simulations are conducted to illustrate
that the finite sample performance for the proposed estimator is better than the inverse
propensity score weighted estimators in many scenarios. Finally, our empirical study
revisits the effect of maternal smoking on infant birth weight.
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1 Introduction

Estimating the treatment effects of one treatment or exposure is a major goal in causal

inferences. Average treatment effect (ATE) is often of interest to researchers and there is

an extensive literature on estimation methods, including, to name just a few, the papers by

Rosenbaum and Rubin (1983), Hahn (1998), Heckman et al. (1997), Hirano et al. (2003), and

references therein. However, the limitation of ATE is that it cannot explain the distributional

effects of the treatment variable on the outcome variable. Sometimes researchers may be

more interested in caring about the treatment’s impact on the distribution of the outcome

variable, especially when the distribution of outcome is skewed or multimodal or long-tailed.

For example, the effect of maternal smoking on infant birth weight is different at the different

levels of infant birth weight. In such scenarios, estimating the counterfactual distribution

functions is more desirable and meaningful (LaLonde, 1995; Almond et al., 2005; Tang et al.,

2021).

Existing methods for estimating counterfactual distribution functions generally depend

on the calculation of inverse propensity score weights (IPW); see, for example, the papers

by Firpo (2007) and Donald and Hsu (2014). The IPW approach is widely used due to its

desirable asymptotic properties (Hirano et al., 2003; Firpo, 2007). However, it often fails to

properly balance the observable covariates in finite samples, as balance is achieved only in

expectation, as addressed by Imai and Ratkovic (2014). Ensuring sufficient covariate balance

is more critical than achieving optimal treatment assignment prediction when estimating

treatment effects. Moreover, a slight misspecification of the propensity score model might

lead to a substantial bias of the estimated treatment effect as discussed in Kang and Schafer

(2007). Additionally, this approach can result in unstable estimates when a few observations

have very large weights; see, for instance, the paper by Zubizarreta (2015) for details.

In light of these challenges, some new approaches have been proposed in the literature

to address these issues in estimating ATE by balancing pre-specified functions of covariates,

which are typically the linear terms or quadratic terms of the covariates. Some methods

realted to propensity score models are proposed with the aim to balance these covariate

functions in finite samples; see, for instance, the papers by Imai and Ratkovic (2014), Li

et al. (2018), Zhao (2019), Ning et al. (2020), Fan et al. (2023), and references therein.

Instead of explicitly modeling the propensity score, other methods argue that estimating
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propensity scores is an intermediate step in obtaining weights and suggest that the weights

can be directly estimated by balancing the covariate functions while minimizing a measure of

the dispersion of the weights; see, for example, the papers by Hainmueller (2012), Zubizarreta

(2015), Chan et al. (2016), Athey et al. (2018), Wang and Zubizarreta (2020), Josey et al.

(2021), and references therein. However, as pointed out by Chan et al. (2016), Zhao and

Percival (2017), Wang and Zubizarreta (2020), and Fan et al. (2023), the theoretical validity

of using such methods to estimate ATE relies on the assumption that the conditional means

of the potential outcomes can be linearly represented by the pre-specified balancing func-

tions. Therefore, the methods proposed for estimating ATE cannot be directly applied to

estimate counterfactual distribution functions, since the conditional distribution functions

of outcome variables are generally not well approximated by linear combinations of the bal-

ancing functions commonly used for ATE estimation. This gap motivates us to develop a

novel covariate balancing method for the estimation of counterfactual distribution functions,

designed to circumvent the aforementioned shortcomings inherent in the IPW approach.

This paper proposes a three-step procedure to estimate the counterfactual distribution

functions without modeling the propensity score. In the first step, we use a nonparamet-

ric/semiparametric method to estimate the conditional cumulative distribution functions

(CDF) of the outcome variable given the covariates for the treated and control groups, re-

spectively. Then, we determine the weights by minimizing their dispersion, while ensuring

exact balance of the estimated conditional CDF across the treated, untreated, and combined

groups. We call these weights as the optimal distribution balancing weights (ODBW). Finally,

we estimate the counterfactual distribution functions using the weighted empirical CDF. We

show that the proposed estimator converges weakly to a mean-zero Gaussian process at the

conventional parametric convergence rate of
√
n under certain regular conditions. Further-

more, we propose a properly designed Bootstrap method that can be used for statistical

inferences, together with its theoretical justification. With the estimates of the counter-

factual distribution functions, we also provide methods to estimate the quantile treatment

effects (QTE) and test the stochastic dominance relationship between the potential outcome

distributions.

It is interesting to note that some existing papers are related to our work, including Rothe

(2010) and Hsu et al. (2022). For example, Rothe (2010) proposed a fully nonparametric pro-

cedure to evaluate the effect of changes in the distribution of covariates on the unconditional
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distribution of the outcome variable, whereas Hsu et al. (2022) considered extrapolation of

quantile treatment effects estimated from a status quo population to a counterfactual popu-

lation. Our method shares the same first step to estimate the conditional CDF of potential

outcomes as in their procedures, but differs in the estimation of the unconditional potential

outcome CDF. We propose a weighting scheme that achieves covariate balancing to obtain

the unconditional CDF estimation instead of simply averaging the estimated conditional

CDF. Since the estimates based on covariate balancing are stable as long as the conditional

CDF of potential outcomes can be well approximated by linear combinations of the balancing

functions, the proposed estimation method is not sensitive to the estimates of the conditional

CDF in the first step, which is supported by the results of Monte Carlo simulations reported

in Section 4.

The remainder of the article is organized as follows. We describe the model framework and

the proposed estimation procedure in Section 2, which also presents the asymptotic theory

under some regularity conditions and includes a Bootstrap inference procedure with its theo-

retical justification. Section 3 demonstrates the usefulness of applying the developed method

to make statistical inferences for quantile treatment effect and testing stochastic dominance

relationship between the potential outcome distributions. Section 4 collects simulation re-

sults to evaluate the finite sample performance of the proposed methods. In Section 5, we

revisit the effects of maternal smoking on infant birth weight. Finally, Section 6 concludes

the paper. All technical proofs are relegated to Appendix.

2 Estimation of Counterfactual Distributions

We adopt the potential outcome framework initiated by Rubin (1974). Let D ∈ {0, 1}
be a binary treatment indicator such that D = 1 if the individual receives treatment; D = 0

otherwise. Define Y (1) ∈ R as the potential outcome if the individual is assigned to the

treated group and Y (0) ∈ R as that to the untreated group. Furthermore, let X ∈ X ⊂ Rp

be a vector of covariates. We consider the random sample {Yi(0), Yi(1), Di, Xi}ni=1 in an

independent and identically distributed (i.i.d.) fashion. Note that the observed sample is

{Yi, Di, Xi}ni=1, where Yi = (1−Di)Yi(0) +DiYi(1) is the observed outcome variable.

Let Fd(·) denote the marginal cumulative distribution function of Y (d) for d = 0, 1.

Here, F0(·) and F1(·) are counterfactual distribution functions, since they do not arise as
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distributions from any observable population. Our focus is on estimating F0(·) and F1(·).
To properly identify F0(·) and F1(·), the following assumption is often made in the literature

(Rosenbaum and Rubin, 1983).

Assumption 1 (Strong Ignorability). (i) Unconfoundedness: {Y (0), Y (1)} ⊥⊥ D |X;

(ii) Overlap: for all x ∈ X , the probability score function π(x) = P (D = 1 |X = x) is

bounded away from 0 and 1.

The unconfoundedness assumption requires that the treatment assignment is independent

of the potential outcomes conditional on the observed covariates. It rules out the unobserved

factors that simultaneously affect the treatment assignment and the potential outcomes.

The overlap condition requires that the support of X to be the same across the treated and

untreated groups. These two assumptions together are called “strong ignorability” in the

econometrics and/or statistics literature.

2.1 Distribution Balancing Estimation Method

We consider using the weighting method to estimate F0(·) and F1(·). Let wi ≥ 0 be the

weight associated with the observation (Yi, Di, Xi) for i = 1, · · · , n, and define the weight

vector w = (w1, · · · , wn)
T . Further, define wdi = 1(Di = d)wi for d = 0 and 1, where 1(·) is

the indicator function. We estimate Fd(y) using the following weighted empirical CDF

󰁥Fd(y) =
1

n

n󰁛

i=1

wdi1 (Yi ≤ y) (1)

for d = 0 and 1. Conventionally, the weights are obtained by first modeling the propensity

score function π(x) and then inverting the estimated propensity scores, which are called the

inverse propensity score weights. More specifically, the IPWs are defined as wIPW
0i = 1(Di =

0)/[1− π(Xi)] and wIPW
1i = 1(Di = 1)/π(Xi). Despite being widely used, the IPW approach

suffers from some problems in practice as discussed in Section 1.

First, we consider the estimation error of 󰁥Fd(y) defined in (1). To this end, let Fd(·|x)
denote the conditional CDF of Y (d) given X = x for d = 0, 1. Given the weights wdi, the
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estimation error of 󰁥Fd(y) can be decomposed as

󰁥Fd(y)− Fd(y) =
1

n

n󰁛

i=1

wdi1 (Yi ≤ y)− Fd(y)

=

󰀥
1

n

n󰁛

i=1

wdiFd(y |Xi)−
1

n

n󰁛

i=1

Fd(y |Xi)

󰀦
+

󰀥
1

n

n󰁛

i=1

Fd(y |Xi)− Fd(y)

󰀦

+
1

n

n󰁛

i=1

wdi [1 (Yi ≤ y)− Fd(y |Xi)]

:=B1 +B2 +B3.

One can see clearly that the second term B2 and the third term B3 go to zero by the law of

large numbers under certain regularity conditions. If we choose the weights such that

1

n

n󰁛

i=1

wdiFd (y |Xi) =
1

n

n󰁛

i=1

Fd (y |Xi) , (2)

which is termed as the distribution balancing condition, then, Fd(y |Xi) achieves balance

between the treated/untreated group and full population after weighting. Therefore, the

first term B1 is zero and 󰁥Fd(y) becomes a consistent estimator of Fd(y).

In practice, the balancing condition (2) cannot be directly applied. Firstly, the condi-

tional CDF Fd (y | xi) is unknown and must be estimated. To this end, we propose using

the kernel method to estimate Fd (y |Xi). When the dimension of Xi is relatively large,

some semiparametric estimation methods can also be employed, as described in Section 2.5.

Secondly, to estimate Fd(y) for all y ∈ Y , where Y is the support of the outcome variable, it

is infeasible to require that the balance condition (2) exactly holds for all y ∈ Y . Without

loss of generality, we assume that Y is a closed interval, denoted as [yl, yu]. Let yl = q1 <

· · · < qJ = yu be the equally spaced grid points on [yl, yu]. Then, according to the polynomial

interpolation error formula from Süli and Mayers (2003), we have

Fd (y |Xi) =
J󰁛

j=1

cj(y)Fd (qj |Xi) +
F

(J)
d (ξy |Xi)

J !

J󰁜

j=1

(y − qj) (3)

for any y ∈ [yl, yu], where cj(y) =
󰁔J

k=1,k ∕=j
y−qk
qj−qk

, ξy ∈ [yl, yu] depends on y and Xi, and

F
(J)
d (ξy |Xi) = ∂JFd(u |Xi)

∂uJ

󰀏󰀏
u=ξy

. It is easy to see that
󰀏󰀏󰀏
󰁔J

j=1 (y − qj)
󰀏󰀏󰀏 =

󰁔J
j=1 |y − qj| ≤

(J−1)!
4

󰀃
yu−yl
J−1

󰀄J
. If we assume that the absolute value of F

(J)
d (ξy |Xi) is bounded by C0 > 0
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that does not depend on J , then, equation (3) leads to

󰀏󰀏󰀏󰀏󰀏Fd (y |Xi)−
J󰁛

j=1

cj(y)Fd (qj |Xi)

󰀏󰀏󰀏󰀏󰀏 ≤
C0

4J

󰀕
yu − yl
J − 1

󰀖J

.

Assume that the balance condition (2) exactly holds for y = q1, · · · , qJ . Since Fd (qJ |Xi) ≡ 1

by definition, 1
n

󰁓n
i=1 wdiFd (qJ |Xi) =

1
n

󰁓n
i=1 Fd (qJ |Xi) implies 1

n

󰁓n
i=1 wdi = 1 for d = 0

and 1. Therefore, we always assume 1
n

󰁓n
i=1 w0i = 1 and 1

n

󰁓n
i=1 w1i = 1 are in the balance

conditions. Notice that cj(y) does not depend on Xi. Thus, for any y ∈ [yl, yu], the balance

error is
󰀏󰀏󰀏󰀏󰀏
1

n

n󰁛

i=1

wdiFd (y |Xi)−
1

n

n󰁛

i=1

Fd (y |Xi)

󰀏󰀏󰀏󰀏󰀏

≤

󰀏󰀏󰀏󰀏󰀏
1

n

n󰁛

i=1

wdi

J󰁛

j=1

cj(y)Fd (qj |Xi)−
1

n

n󰁛

i=1

J󰁛

j=1

cj(y)Fd (qj |Xi)

󰀏󰀏󰀏󰀏󰀏+
C0

2J

󰀕
yu − yl
J − 1

󰀖J

=

󰀏󰀏󰀏󰀏󰀏

J󰁛

j=1

cj(y)

󰀥
1

n

n󰁛

i=1

wdiFd (qj |Xi)

󰀦
−

J󰁛

j=1

cj(y)

󰀥
1

n

n󰁛

i=1

Fd (qj |Xi)

󰀦󰀏󰀏󰀏󰀏󰀏+
C0

2J

󰀕
yu − yl
J − 1

󰀖J

=
C0

2J

󰀕
yu − yl
J − 1

󰀖J

.

It is clear that the balance error for any y ∈ [yl, yu] tends to zero as the number of grid points

J approaches infinity. We can control J so that the balance error is negligible relative to the

asymptotic performance of 󰁥Fd(y).

Now, we present a three-step procedure for estimating the counterfactual distribution

functions 󰁥F0(y) and 󰁥F1(y) as follows.

Step 1: We estimate the conditional CDF Fd (y |X), d = 0, 1, by the Nadaraya-Watson

estimator as

󰁨Fd(y | x) =
󰁓n

i=1 1(Di = d)1 (Yi ≤ y)Khd
(Xi − x)󰁓n

i=1 1(Di = d)Khd
(Xi − x)

, d = 0, 1, (4)

whereK(·) is a kernel function, hd is the bandwidth, andKhd
(Xi − x) = h−p

d K ((Xi − x) /hd).
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Step 2: Compute the optimal distribution balancing weights 󰁥w = ( 󰁥w1, · · · , 󰁥wn)
T by letting

󰁥w = argmin
w

1

n

n󰁛

i=1

φ (wi) (5)

subject to wi ≥ 0,

1

n

n󰁛

i=1

1(Di = 0)wi
󰁨F0 (qj |Xi) =

1

n

n󰁛

i=1

󰁨F0 (qj |Xi) , j = 1, · · · , J,

1

n

n󰁛

i=1

1(Di = 1)wi
󰁨F1 (qj |Xi) =

1

n

n󰁛

i=1

󰁨F1 (qj |Xi) , j = 1, · · · , J,

and for ι = 1, · · · , L,
1

n

n󰁛

i=1

1(Di = 0)wiuι (Xi) =
1

n

n󰁛

i=1

1(Di = 1)wiuι (Xi) =
1

n

n󰁛

i=1

uι (Xi) ,

where φ (wi) is a non-negative, continuously differentiable and strictly convex function, which

includes some special cases such as the entropy divergence as in Hainmueller (2012) with

φ(wi) = wi log(wi), the stable balancing variance considered in Zubizarreta (2015) defined

as φ(wi) = 1(Di = 0)(wi − n/n0)
2 + 1(Di = 1)(wi − n/n1)

2 with n0 =
󰁓n

i=1 1(Di = 0)

and n1 =
󰁓n

i=1 1(Di = 1), and other distance measures as in Chan et al. (2016), Wang

and Zubizarreta (2020) and Josey et al. (2021). The above objective function 1
n

󰁓n
i=1 φ (wi)

measures the dispersion of the weights w1, · · · , wn and minimizing 1
n

󰁓n
i=1 φ (wi) tries to

control the variance of the estimator. In addition, besides the key constraint developed

from the balance condition in (2), we also allow other functions uι(Xi), ι = 1, · · · , L, to
be balanced across the treated group, untreated group, and combined group. For example,

taking uι (Xi) = X ι
i means to balance the ιth moment; see, for example, the papers by Imai

and Ratkovic (2014) and Fan et al. (2023) for details. The algorithm to calculate the optimal

distribution balancing weights is presented in Section 2.2.

Step 3: Let 󰁥wdi = 1(Di = d) 󰁥wi for d = 0, 1 and i = 1, · · · , n. Then, the counterfactual

distribution functions Fd(y) for d = 0 and 1 are estimated by

󰁥Fd(y) =
1

n

n󰁛

i=1

󰁥wdi1 (Yi ≤ y) (6)

for all y ∈ Y .

Remark 1. It is worth to mention that Rothe (2010), Hsu et al. (2022), and Cai et al. (2022)
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also considered the estimation of the counterfactual distributions Fd(y) using 󰁨Fd(y | x) in (4).

Different from our method, they proposed estimating Fd(y) by 󰁨Fd(y) = 1
n

󰁓n
i=1

󰁨Fd(y|Xi).

Rothe (2010) demonstrated that the estimator 󰁨Fd(y) achieves
√
n-consistency by using high-

order kernels. However, the performance of 󰁨Fd(y) greatly depends on the choice of bandwidth

hd in (4). For our method, 󰁨Fd(y | x) is only used within the balance conditions, and the

counterfactual distribution Fd(y) is estimated by the weighted empirical CDF. The new

estimator 󰁥Fd(y) is not very sensitive to the choice of bandwidth hd in the first stage, which

is supported by the results of Monte Carlo simulations reported in Section 4.

2.2 Implementation of Optimal Weights

The constrained optimization problem in (5) is a convex separable programming problem

with linear constraints. Actually, Tseng and Bertsekas (1987) showed that its dual problem

is an unconstrained convex maximization problem that can be solved by efficient and stable

numerical algorithms. Therefore, we consider its dual problem in the following.

Define 󰁨Ud (x) =
󰀓
󰁨Fd (q | x)T ,u(x)T

󰀔T

with 󰁨Fd(q | x) =
󰀓
󰁨Fd(q1 | x), · · · , 󰁨Fd(qJ | x)

󰀔T

and

u(x) = (u1(x), · · · , uL(x))
T for d = 0 and 1. The Lagrangian of the optimization problem in

(5) can be written as

Ln(w,λ0,λ1) =
1

n

n󰁛

i=1

φ (wi) +
J󰁛

j=1

λ0,j

󰀥
1

n

n󰁛

i=1

1(Di = 0)wi
󰁨F0 (qj |Xi)−

1

n

n󰁛

i=1

󰁨F0 (qj |Xi)

󰀦

+
L󰁛

ι=1

λ0,J+ι

󰀥
1

n

n󰁛

i=1

1(Di = 0)wiuι (Xi)−
1

n

n󰁛

i=1

uι (Xi)

󰀦

+
J󰁛

j=1

λ1,j

󰀥
1

n

n󰁛

i=1

1(Di = 1)wi
󰁨F1 (qj |Xi)−

1

n

n󰁛

i=1

󰁨F1 (qj |Xi)

󰀦

+
L󰁛

ι=1

λ1,J+ι

󰀥
1

n

n󰁛

i=1

1(Di = 1)wiuι (Xi)−
1

n

n󰁛

i=1

uι (Xi)

󰀦

=
1

n

n󰁛

i=1

φ (wi) +
1

n

n󰁛

i=1

󰁛

d=0,1

1(Di = d)wi
󰁨Ud(Xi)

Tλd −
1

n

n󰁛

i=1

󰁛

d=0,1

󰁨Ud(Xi)
Tλd,

(7)

where λ0 = (λ0,1, · · · ,λ0,J+L)
T and λ1 = (λ1,1, · · · ,λ1,J+L)

T are the Lagrange multipliers.

9



The first order condition ∂Ln(w,λ0,λ1)/∂wi = 0 yields

φ′ (wi) = −
󰁛

d=0,1

1(Di = d)󰁨Ud(Xi)
Tλd,

where φ′(·) is the first derivative of φ(·). Let (φ′)−1(·) be the inverse function of φ′(·). Then,

wi = (φ′)
−1

󰀣
−

󰁛

d=0,1

1(Di = d)󰁨Ud(Xi)
Tλd

󰀤
. (8)

For simplicity, define ρ(t) = φ
󰀋
(φ′)−1 (−t)

󰀌
+ t (φ′)−1 (−t). Plugging (8) back into (7)

eliminates the constraints, resulting in an unrestricted dual maximization problem given by

󰁨Gn(λ0,λ1) =
1

n

n󰁛

i=1

ρ

󰀣
󰁛

d=0,1

1(Di = d)󰁨Ud(Xi)
Tλd

󰀤
− 1

n

n󰁛

i=1

󰁛

d=0,1

󰁨Ud(Xi)
Tλd

=
1

n

n󰁛

i=1

󰁛

d=0,1

1(Di = d)ρ
󰀓
󰁨Ud(Xi)

Tλd

󰀔
− 1

n

n󰁛

i=1

󰁛

d=0,1

󰁨Ud(Xi)
Tλd

:= 󰁨Gn,0(λ0) + 󰁨Gn,1(λ1),

where

󰁨Gn,d(λd) =
1

n

n󰁛

i=1

1(Di = d)ρ
󰀓
󰁨Ud(Xi)

Tλd

󰀔
− 1

n

n󰁛

i=1

󰁨Ud(Xi)
Tλd. (9)

It is clear that ρ′(t) = (φ′)−1 (−t) and ρ′′(t) = −1/φ′′ 󰀃(φ′)−1 (−t)
󰀄
. Thus, both 󰁨Gn,0(λ0) and

󰁨Gn,1(λ1) are strictly concave due to the strict convexity of φ(·). Therefore, the solution to

the constrained optimization problem in (5) is

󰁥wi = (φ′)
−1

󰀣
−

󰁛

d=0,1

1(Di = d)󰁨Ud(Xi)
T 󰁥λd

󰀤
= ρ′

󰀣
󰁛

d=0,1

1(Di = d)󰁨Ud(Xi)
T 󰁥λd

󰀤
, (10)

where 󰁥λ0 and 󰁥λ1 are the unique maximizers of 󰁨Gn,0(λ0) and 󰁨Gn,1(λ1), respectively.

2.3 Asymptotic Properties

This subsection is devoted to investigating the asymptotic properties of the proposed

counterfactual distribution estimators 󰁥F0(y) and 󰁥F1(y). For ease of presentation, we first

introduce some notations. For d = 0, 1, define

G∗
d(λd) = E

󰀅
1(Di = d)ρ

󰀃
Ud(X)Tλd

󰀄󰀆
− E

󰀅
Ud(X)Tλd

󰀆
,

10



where Ud(x) =
󰀃
Fd(q | x)T ,u(x)T

󰀄T
, Fd(q | x) = (F (q1 | x), · · · , F (qJ | x))T , and u(x) =

(u1(x), · · · , uL(x))
T . Clearly, G∗

d(λd) is the probability limit of 󰁨Gn,d(λd) in (9). For the prob-

ability space (X ,A, P ) and a Borel function g defined on the space, let 󰀂g󰀂P,t =
󰀃󰁕

|g|t dP
󰀄1/t

denote the Lt(P ) norm of g for 1 ≤ t < ∞, and supx∈X |g| denotes its L∞ norm. Before

we embark on establishing the asymptotic results, all regularity conditions for asymptotic

analysis are gathered together in the following.

Assumption 2 (Sampling Process). The data
󰀋
(Yi(0), Yi(1), Di, Xi)

󰀌n

i=1
, are independent

and identically distributed (i.i.d).

Assumption 3 (Distribution of X). (i) The support X of p-dimensional covariate X is a

Cartesian product of p compact intervals; (ii) The density function fX(x) is bounded away

from 0 on X ; (iii) The density function fX(x) is twice continuously differentiable within the

interior of X .

Assumption 4 (Distribution of Y (d)). (i) Y (d) has a compact support Y for d = 0 and 1;

(ii) The distribution functions of potential outcomes, F0(y) and F1(y), are continuous on Y;

(iii) The density functions of potential outcomes, f0(y) and f1(y), are bounded away from 0

and twice continuously differentiable within the interior of Y.

Assumption 5 (Conditional distributions). (i) The propensity score function π(x) is r-

times continuously differentiable within the interior of X for r > p/2; (ii) The conditional

distributions F0(y | x) and F1(y | x) are r-times differentiable with respect to x on the interior

of X and infinitely differentiable with respect to y within the interior of Y. The absolute

value of the derivative F
(J)
d (ξy | x) := ∂JFd(y |x)

∂yJ
is bounded by a positive constant C0 that

does not depend on J for d = 0, 1; (iii) Fd(y|x) ∈ Fd, which is a set of conditional CDF

functions satisfying logN[](ε,Fd, L2) ≤ C1(1/ε)
p/r for a positive constant C1 and d = 0, 1,

where N[](ε,F , L2) represents the bracketing number of F with respect to the L2 norm by

ε-brackets.

Assumption 6 (Kernel function). The kernel function K(u) is bounded and satisfies: (i)
󰁕
K(u)du = 1; (ii) K(u) = K(−u); (iii)

󰁕
|u2K(u)| du < ∞; (iv) K(u) = 0 if |u| > 1; (v)

K(u) is twice continuously differentiable with respect to u on its support.

Assumption 7 (Bandwidth). As the sample size n goes to infinity, the bandwidth hd for

d = 0, 1 satisfies (i) hd → 0; (ii) n(1/2−s)hp
d/ log nd → ∞; (iii) n(1/4+s/2)h2

d → 0 for some

0 < s < 1/4.

11



Assumption 8 (Dispersion measure). (i) ρ(·) is a twice continuously differentiable and

strictly concave function defined on a bounded set; (ii) The first derivative ρ′(·) > 0, the

second derivative ρ′′(·) < 0, and both derivatives are bounded away from zero.

Assumption 9 (Balance functions). (i) Let M = J +L. The number of balance conditions

satisfies J = O(log n) and M = O(ns); (ii) There exists positive constant C2, C3, and C4 such

that supx∈X 󰀂Ud(x)󰀂2 ≤ C2M
1/2, E

󰁱
Ud (X)T Ud (X)

󰁲
≤ C3, νmin

󰀃
E
󰀅
Ud(X)Ud(X)T

󰀆󰀄
≥

C4 , and νmin

󰀃
1
n

󰁓n
i=1 1(Di = d)Ud(Xi)Ud(Xi)

T
󰀄
≥ C4 for d = 0, 1, where νmin(·) denote the

minimum eigenvalue; (iii) Let m∗
0(x) = (ρ′)−1 (1/(1− π(x))) and m∗

1(x) = (ρ′)−1 (1/π(x)).

Then m∗
d(·) ∈ Md, which is a set of functions satisfying logN[] {ε,Md, L2(P )} ≤ C5(1/ε)

1/ν

for some constants C5 > 0, ν > 1/2 and d = 0, 1. (iv) There exist rπ > 1/(2s), λ†
0 ∈ RM and

λ†
1 ∈ RM such that supx∈X

󰀏󰀏󰀏m∗
0(x)−U0(x)

Tλ†
0

󰀏󰀏󰀏 = O (M−rπ) and supx∈X

󰀏󰀏󰀏m∗
1(x)−U1(x)

Tλ†
1

󰀏󰀏󰀏 =
O (M−rπ).

Assumption 10 (Optimization). (i) G∗
d(λd) has a unique maximizer λ∗

d for d = 0 and 1.

(ii) There exists a constant C6 > 0 such that
󰁓J

j=1(λ
∗
d,j)

2 ≤ C6J and
󰁓M

j=1(λ
∗
d,j)

2 ≤ C6M .

Assumption 2 requires the sampling process to be i.i.d, which is standard in many microe-

conometric applications. Assumptions 3 and 4 restrict the continuity and smoothness of the

distributions of the covariates and potential outcomes. Assumption 5 imposes smoothness

conditions on the propensity score and conditional distribution functions, respectively. As-

sumptions 6 and 7 provide conditions for the kernel function and its bandwidth. Assumption

8 assumes the smoothness and concavity of ρ(·), which is a transformation of the measure

of dispersion of the weights φ(·). This makes it possible to translate the consistency of 󰁥λd

into the consistency of weights. Assumption 9 collects conditions about balance functions.

Assumption 9(i) imposes conditions on the growth rate of the number of balance functions

relative to the number of observations. Assumption 9(ii) restricts the magnitude of the bal-

ance functions, which is a standard technical assumption similar to that in Assumption 2 of

Newey (1997) and Assumption E.1.6 of Fan et al. (2023). Assumption 9(iii) assumes that

(ρ′)−1 (·) is the link function for the inverse propensity model and the corresponding system-

atic component m∗
d(x) belongs to a functional class Md, whose complexity is restricted in a

manner similar to Assumption 2(v) of Wang and Zubizarreta (2020) and Assumption E.1.7

of Fan et al. (2023). Assumption 9(iv) presumes that m∗
d(x) can be well approximated by

linear combination of the balance functions Ud(x), which is a weaker condition compared to

12



Assumption 1(vi) of Wang and Zubizarreta (2020). Wang and Zubizarreta (2020) assumed

that m∗
d(x) can be well approximated by Ud(x)

Tλ∗
d, where λ∗

d is the unique maximizer of

G∗
d(λd). In contrast, we do not require λ†

d to be the same as λ∗
d. Finally, Assumption 10

provides some standard regularity conditions for consistency of minimum risk estimators. It

aligns with Assumption 1(i) and (ii) of Wang and Zubizarreta (2020) and Assumption 3.1

of Fan et al. (2023).

Under the above assumptions, we present the asymptotic properties of the estimated

conditional CDF 󰁨Fd(y |X), the estimated weights, and the estimated distribution function

󰁥Fd(·), respectively. The detailed theoretical proofs are provided in Appendix. First, we start

with the asymptotic properties of 󰁨Fd(y | x). The following proposition given in Rothe (2010)

provides an explicit uniform convergence rate for the first-step estimator based on the kernel

method.

Proposition 1. Under Assumptions 1-7, we have

sup
y∈Y

sup
x∈X

󰀏󰀏󰀏 󰁨Fd(y|x)− Fd(y|x)
󰀏󰀏󰀏 = Op

󰀣󰀕
log n

nhp
d

󰀖1/2

+ h2
d

󰀤
. (11)

Next, we show consistency of the optimal distribution balancing weights obtained in the

second step. To this end, define 󰁥wd(x) = ρ′
󰀓
󰁨Ud(x)

T 󰁥λd

󰀔
for d = 0 and 1. Then, the optimal

distribution balancing weight 󰁥wi = 1(Di = 0) 󰁥w0(Xi) + 1(Di = 1) 󰁥w1(Xi) according to (10).

We further define w∗
d(x) = ρ′

󰀓󰁓
d=0,1 1(Di = d)Ud(x)

Tλ∗
d

󰀔
. The following proposition shows

that 󰁥wd(x) converges to w∗
d(x) and the inverse propensity score weight in both L2 and L∞

norms.

Proposition 2. Under Assumptions 1-10, we have

sup
x∈X

| 󰁥wd(x)− w∗
d(x)| = Op

󰀃
MJn−(1/4+s/2)

󰀄
,

sup
x∈X

󰀏󰀏 󰁥wd(x)− π(x)−d(1− π(x))−(1−d)
󰀏󰀏 = Op

󰀃
MJn−(1/4+s/2) +M1/2−rπ/2

󰀄
,

󰀂 󰁥wd(x)− w∗
d(x)󰀂P,2 = Op

󰀓√
MJn−(1/4+s/2)

󰀔
,

and
󰀐󰀐 󰁥wd(x)− π(x)−d(1− π(x))−(1−d)

󰀐󰀐
P,2

= Op

󰀓√
MJn−(1/4+s/2) +M−rπ/2

󰀔

for d = 0 and 1.
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Based on Propositions 1 and 2, we can derive the asymptotic properties of 󰁥Fd(y). The

following theorem shows the limiting performance of 󰁥Fd(y), with its detailed proof relegated

to Appendix. To prove the theorem, we first show that
√
n
󰁫
󰁥Fd(y)− Fd(y)

󰁬
is asymptotically

linear with an influence function representation, similar to the Bahadur representation for

sample quantile, that is,

√
n
󰁫
󰁥Fd(y)− Fd(y)

󰁬
=

1√
n

n󰁛

i=1

ψF
d (y,Zi) + op(1),

where

ψF
d (y,Z) =

1{D = d} [1{Y ≤ y}− Fd(y |X)]

π(X)d[1− π(X)]1−d
+ [Fd (y |X)− Fd(y)] (12)

with Z = (Y,D,XT )T . Then, the result in Theorem 1 holds by the functional central limit

theorem1.

Theorem 1. Let y = (y0, y1)
T , F(y) = (F0 (y0) , F1 (y1))

T and 󰁥F(y) =
󰀓
󰁥F0 (y0) , 󰁥F1 (y1)

󰀔T

.

Under Assumptions 1-10, uniformly for y ∈ Y × Y, we have

√
n
󰁫
󰁥F(y)− F(y)

󰁬
⇒ F(y),

where “ ⇒ ” denotes the weak convergence, F(y) = (F0 (y0) ,F1 (y1))
T is a two-dimensional

Gaussian process with zero mean and covariance function

ΨF (y,y′) = E
󰁫
ψF (y,Z)ψF (y′,Z)

T
󰁬
,

and the convergence takes place in ℓ∞(Y)× ℓ∞(Y), where ℓ∞(Y) is the set of bounded func-

tions over Y. Here, ψF (y,Z) =
󰀃
ψF
0 (y0,Z) ,ψ

F
1 (y1,Z)

󰀄T
with ψF

d (y,Z) defined in (12).

Theorem 1 shows that 󰁥F(y) − F(y) converges weakly to a mean-zero Gaussian process

at the usual parametric rate of
√
n despite the use of nonparametric estimators in the first

step.

2.4 Bootstrap Inference

Theorem 1 provides a theoretical foundation for conducting inference for the counter-

factual distribution functions, but it needs a consistent estimation of the covariance func-

1For the detailed definitions of Donsker class, the weak convergence, and the functional central limit
theorem, the reader is referred to the book by Billingsley (1999).
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tion ΨF (y,y′), which is often a cumbersome task in practice. Here, we propose an eas-

ily implemented nonparametric Bootstrap scheme for inference. First, the Bootstrap data

{(Y b
i , D

b
i , X

b
i )}ni=1 are drawn with replacement from the observed sample {(Yi, Di, Xi)}ni=1.

Then, the Bootstrap data are used to calculate the Bootstrap estimates of F0(y0) and F1(y1),

denoted by 󰁥Fb(y) =
󰀓
󰁥F b
0 (y0), 󰁥F b

1 (y1)
󰀔T

, using the method described in Section 2.1, and the

above procedure is repeated many times, for example, B =1000 times. The Bootstrap es-

timates 󰁥F1(y), · · · , 󰁥FB(y) can be used for inference of 󰁥F(y). Theorem 2 gives a theoretical

justification for using this Bootstrap procedure with its proof presented in Appendix.

Theorem 2. Under Assumptions 1-10, uniformly for y ∈ Y × Y, we have:

√
n
󰁫
󰁥Fb(y)− 󰁥F(y)

󰁬
⇒ F(y)

in probability, conditional on the data2, where F(y) is the Gaussian process defined in The-

orem 1.

2.5 Semiparametric Estimation of Conditional CDF

It is well known in the nonparametric statistics literature that when the covariate di-

mension is relatively large but still finite (p does not depend on n), it is not desirable to

estimate the conditional CDF by kernel method as in (4), due to the so-called “curse of

dimensionality”. To circumvent this problem, some semiparametric estimators can be em-

ployed. One can adopt the approach suggested in Aı̈t-Shahalia and Brant (2001) and Hall

and Yao (2005), which involves using an index model. Specifically, it assumes that there

exists a p× 1 vector γd so that Fd(y | x) = Fd(y | xTγd). One can first estimate γd to approx-

imate Fd(y | x) by Fd(y | xTγd) under a least-squares criterion, then, use xTγd as the smooth

variable to estimate the conditional CDF3. Another approach is to estimate the conditional

CDF using quantile regression as in Koenker and Bassett (1978). This idea was also used

in Melly (2006), Chernozhukov et al. (2013), and Cai et al. (2022). We present this method

below in detail.

Let Qd(τ | x) = inf{y : Fd(y | x) ≥ τ} denote the conditional quantile function of Y (d)

conditional on X = x at the quantile level τ ∈ (0, 1). Assume that Qd(τ | x) = xTβd(τ) for

2See Section 3.6 in van der Vaart and Wellner (1996) for a precise definition of conditional weak conver-
gence in probability.

3For details, the reader is referred to the paper by Hall and Yao (2005).
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each quantile level τ . The coefficients βd(τ) can be estimated by

󰁥βd(τ) = arg min
βd(τ)

n󰁛

i=1

1(Di = d) ρτ
󰀃
Yi − βd(τ)

TXi

󰀄
, (13)

where ρτ (v) = v[τ−1(v ≤ 0)] is the so-called check function. Since Fd(y | x) =
󰁕 1

0
1 (Qd(τ | x) ≤ y) dτ ,

the conditional CDF can be estimated by

󰁥Fd(y | x) = ε+

󰁝 1−ε

ε

1
󰀓
xT 󰁥βd(τ) ≤ y

󰀔
dτ ≈ ε+

S󰁛

j=2

(τj − τj−1) 1
󰀓
xT 󰁥βd(τj) ≤ y

󰀔
, (14)

where the trimming by ε avoids estimation of tail quantiles, and 󰁥βd(τ) is estimated by (13)

on a equally spaced mesh ε = τ1 < · · · < τS = 1− ε.

Remark 2. Based on Proposition 5 in Chernozhukov et al. (2010), the conditional CDF

estimators obtained by (14) are
√
n-consistent when the linear conditional quantile models

are correctly specified and the mesh width is o(n−1/2). In this case, the convergence rate

of 󰁥Fd(y | x) is faster than that of the kernel estimator 󰁨Fd(y | x) as stated in Proposition 1.

Consequently, the conclusions in Theorems 1 and 2 still hold if we use the estimator 󰁥Fd(y | x)
to replace 󰁨Fd(y | x) in the first stage.

Remark 3. In the above, we only consider the case that p is finite. In some applications,

p might be allowed to depend on the sample size so that the model setting in this section

becomes the case with either high-dimensional (p → ∞ but p/n → 0) or ultra-high dimen-

sional (p ≫ n) covariates. For such cases, one might follow the idea in Cai et al. (2024) for

a mean model to do some extensions, which are not straightforward and can be warranted

as future research topics.

3 Applications

In this section, the proposed estimation method is applied to some interesting application

problems. Specifically, we consider making inference of the QTE and testing the stochastic

dominance relationship between the distributions of potential outcomes.
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3.1 Inferences for Quantile Treatment Effect

Given a quantile level τ ∈ (0, 1), the QTE is defined as

∆(τ) = Q1(τ)−Q0(τ),

where Qd(τ) = inf {y : Fd(y) ≥ τ} for d = 0 and 1. Using the estimations 󰁥F0(·) and 󰁥F1(·) in
(6), the QTE can be estimated as

󰁥∆(τ) = 󰁥Q1(τ)− 󰁥Q0(τ), (15)

where 󰁥Qd(τ) = inf
󰁱
y : 󰁥Fd(y) ≥ τ

󰁲
. In practice, if we are only interested in ∆(τ) for τ in

a short closed interval [a, b], we do not need to select grid points q1 < · · · < qJ across the

entire range of the observable outcomes. Instead, we only need to find a closed interval

[ld, ud] ⊃ [Qd(a), Qd(b)] and take grid points within this interval. To determine the interval,

we suggest using 󰁨Qd(·) as a reference, where 󰁨Qd(τ) = inf
󰁱
y : 󰁨Fd(y) ≥ τ

󰁲
with 󰁨Fd(y) =

1
n

󰁓n
i=1

󰁨Fd (y |Xi). The grid points can be distributed on the interval
󰁫
󰁨Qd(a− 󰂃), 󰁨Qd(b+ 󰂃)

󰁬

for some small 󰂃 > 0 . For example, in our simulation study, when estimating ∆(τ) for a

fixed τ , we take 5 equally spaced grid points on the interval
󰁫
󰁨Qd(τ − 0.1), 󰁨Qd(τ + 0.1)

󰁬
.

Under the conclusions given in Theorem 1, we can obtain asymptotic properties of the

QTE estimator according to the Bahadur representation as follows.

Proposition 3. Under Assumptions 1-10, uniformly for τ ∈ [a, b] with 0 < a < b < 1, we

have
√
n
󰁫
󰁥∆(τ)−∆(τ)

󰁬
⇒ Q(τ),

where Q(τ) is a Gaussian process with zero mean and covariance function ΨQ (τ1, τ2) =

E
󰀅
ψQ (τ1)ψ

Q (τ2)
󰀆
with

ψQ(τ) =
󰀅
ψF
1 (Q1(τ),Z)/f1 (Q1(τ))− ψF

0 (Q0(τ),Z)/f0 (Q0(τ))
󰀆
,

where ψF
d (·) is given in (12). The convergence takes place in ℓ∞([a, b]).

Proposition 3 shows that 󰁥∆(τ)−∆(τ) converges weakly to a zero-mean Gaussian process

at the usual convergence rate of
√
n. Denote the Bootstrap estimate of ∆(τ) as 󰁥∆b(τ), the

following proposition shows that the nonparametric bootstrap in Section 2.4 is valid in this

case as well.

17



Proposition 4. Under Assumptions 1-10, uniformly for τ ∈ [a, b] with 0 < a < b < 1, we

have:
√
n
󰁫
󰁥∆b(τ)− 󰁥∆(τ)

󰁬
⇒ Q(τ),

conditional on the data and in probability, where Q(·) is a Gaussian process defined in Propo-

sition 3.

Based on Proposition 4, the level 1 − α simultaneously confidence band for 󰁥∆(τ) on

interval [a, b] can be constructed as

CB(1− α) =
󰁱
󰁥∆(τ)− 󰁥c1−α󰁥σ(τ), 󰁥∆(τ) + 󰁥c1−α󰁥σ(τ) : τ ∈ [a, b]

󰁲
,

where 󰁥σ2(τ) is the sample variance of the Bootstrap estimates 󰁥∆1(τ), · · · , 󰁥∆B(τ), and

󰁥c1−α = min

󰀫
c :

1

B

B󰁛

b=1

1

󰀕
sup
τ

󰀏󰀏󰀏∆̂b(τ)− 󰁥∆(τ)
󰀏󰀏󰀏 /󰁥σ(τ) ≤ c

󰀖
≥ 1− α

󰀬
.

Such a confidence band can be used to test whether the treatment effects differ along different

quantile levels. The testing problem can be formulated as

H0 : ∆(τ) = ∆ for all τ ∈ [a, b] versus H1 : ∆(τ) ∕= ∆ for some τ ∈ [a, b],

where ∆ is a pre-specified constant. For such a testing problem, we can reject H0 if the

constant line ∆(τ) ≡ ∆ for τ ∈ [a, b] is not contained in the confidence band CB(1− α).

3.2 Testing Stochastic Dominance

Making inferences regarding stochastic dominance relationship plays an important role

in social sciences, with a vast amount of literature in economics, including but not limited

to, Anderson (1996), Barrett and Donald (2003), Linton et al. (2005), Donald and Hsu

(2016), Whang (2019), Linton et al. (2023), and references therein. Different from the

existing literature, our focus is on testing the stochastic dominance relationship between

the counterfactual distributions, which are not derived from any observable populations.

Interestingly, Rothe (2010), Maier (2011), and Donald and Hsu (2014) also considered such

a test in a similar scenario, but they used different methods to estimate the counterfactual

distributions. Indeed, Rothe (2010) used the estimation method outlined in Remark 1,

while Maier (2011) and Donald and Hsu (2014) estimated the counterfactual distributions

by inverse propensity score weights. In this paper, we use 󰁥F0(·) and 󰁥F1(·) obtained in Section
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2.1 to test stochastic dominance.

We only discuss test for the first order stochastic dominance (SD1) between the potential

outcomes Y (0) and Y (1). To test if Y (1) SD1 Y (0), the hypothesis is formulated as

H0 : F1(y) ≤ F0(y) for all y ∈ Y versus H1 : F1(y) > F0(y) for some y ∈ Y . (16)

A commonly used statistic for testing the first order stochastic dominance is the Kolmogorov-

Smirnov (KS) statistic, which is given by

󰁦KS =
√
n sup

y∈Y

󰁫
󰁥F1(y)− 󰁥F0(y)

󰁬
=

√
n max

y∈{Y1,··· ,Yn}

󰁫
󰁥F1(y)− 󰁥F0(y)

󰁬
.

The second equality follows from the fact that both 󰁥F1(y) and 󰁥F0(y) are step function and

their values change only at the observed Yi, i = 1, · · · , n.

Note that we are testing a composite null hypothesis. For this case, it is challenging

to find the limit null distribution since the limit null distribution depends on the underly-

ing distributions, while there are infinitely many different combinations of F1(·) and F0(·)
satisfying the null hypothesis. The typical way to solve this problem is to find the least

favorable configuration (LFC)4 to construct an asymptotically valid test procedure based on

Bootstrapping the test statistic similar to that in Barrett and Donald (2003). It is easy to

see that the LFC in this context corresponds to F1(y) = F0(y) for all y ∈ Y . Let 󰁥F b
1 and

󰁥F b
0 be the Bootstrap estimates of the potential outcomes’ distributions based on the same

Bootstrap scheme as in Section 2.4. Then, the Bootstrap p-value can be calculated as

󰁥p = B−1

B󰁛

b=1

1
󰀓
󰁦KS

b
> 󰁦KS

󰀔
,

where

󰁦KS
b
=

√
n max

y∈{Y1,...Yn}

󰁱󰁫
󰁥F b
1 (y)− 󰁥F b

0 (y)
󰁬
−

󰁫
󰁥F1(y)− 󰁥F0(y)

󰁬󰁲
.

Thus, we reject H0 if 󰁥p is less than the significance level α. The following proposition delivers

theoretical justification for this approach and its proof is shown in Appendix.

Proposition 5. Suppose that Assumptions 1-10 hold. If we reject H0 when 󰁥p < α for

α < 1/2, then, (i) Under H0 defined in (16), limn→∞ P (󰁥p < α) ≤ α, and (ii) Under a fixed

4Under a composite null hypothesis, the least favorable case is the distribution for which the null holds,
but which is most difficult to distinguish from any distribution in the alternative hypothesis. See Section 3
in Lehmann and Romano (2005).
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alternative hypothesis defined in (16), limn→∞ P (󰁥p < α) = 1.

Proposition 5 implies that the size of the proposed test is asymptotically no larger than

the pre-specified significance level α, and the power of the proposed test is asymptotically

approaching 1 under the alternative hypothesis.

4 Monte Carlo Simulation Study

In this section, a series of Monte Carlo simulations are conducted to evaluate the perfor-

mances of the proposed QTE estimator and stochastic dominance test in finite samples.

4.1 Performance of Estimating QTE

We consider several different settings of the data generating process (DGP) and compare

the performance of our QTE estimator with other estimators. For a comparison, we use

“DIQ” to denote the inconsistent estimator that takes difference in quantiles of the outcome

variables for the treatment and control groups. Let “Initial” denote the estimation method

described in Rothe (2010) and Hsu et al. (2022), which estimates the QTE by the difference in

quantiles of 󰁨F0(y) and 󰁨F1(y) as discussed in Remark 1. We also consider two QTE estimators

derived using the inverse propensity score weights, denoted as “PLE-IPW” and “SLE-IPW”.

For “PLE-IPW”, the propensity score is estimated by a logit estimator, while for “SLE-

IPW”, the propensity score is estimated by a series logit estimator, which includes X, X2

and the cross terms in the propensity score model. Now, we consider the estimator 󰁥∆(τ) in

(15). To calculate 󰁥∆(τ), we first need to solve the constrained optimization problem in (5).

We choose φ(wi) = wi log(wi) as the measure of weight dispersion5 in the objective function.

Three different sets of constraints are considered: (1) only balance the first moment of

covariate; that is, only keep the balance condition for u(x) = x in the constraint, but remove

the balance condition for 󰁨Fd (q | x). Such balance conditions are often used for estimating

the ATE as in Hainmueller (2012); (2) only balance the estimated conditional distribution

functions 󰁨Fd (q | x); (3) balance both the estimated conditional distribution functions and

the first moment of covariate. The estimators corresponding to these three different sets of

5We also run simulations by taking the stable balancing variance as in Zubizarreta (2015) as the dispersion
measure. It does not significantly affect the estimation performance. Thus, we omit this part and the results
are available upon request.
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balance conditions are denoted as “Epy 1”, “Epy 2”, and “Epy 3”, respectively. Note that

only “Epy 2” and “Epy 3” use the balance conditions proposed in this paper.

We consider estimating the QTE for quantile levels 0.25, 0.50, and 0.75. For Examples

1 and 2, the Nadaraya-Watson estimator is used to estimate the conditional CDF Fd(y | x).
The Epanechnikov kernel is used and its bandwidth is set as hd = c · n−1/5

d for c = 0.5, 0.75

or 1.0. For Example 3, the dimension of X is set as p = 8, so that we use the quantile

regression method presented in Section 2.5 to estimate the conditional CDF. For each exam-

ple, we repeat the experiment 1000 times independently. The median of absolute deviation

errors (MADE) and the root mean squared errors (RMSE) are reported for performance

measurement. When the closed-form expression of the QTE is not available, we employ a

simulation with a large sample size to obtain its true value.

Example 1: We consider the Skorohod representation6 for the potential outcomes Y (0) and

Y (1). Let the DGP be

Y = Y (1)D + Y (0)(1−D) with Y (0) = 3X1 + 0.4
󰁳

U0X2 and Y (1) = 4X1 + 1.6
󰁳

U1X2,

where D |X ∼ binomial(π(X)), U0, U1, X1 and X2 are independently drawn from the

uniform U(0, 1) distribution, and the propensity score function is set as

π(X) = exp (−1.5 +X1 +X2) {1 + exp (−1.5 +X1 +X2)}−1 .

The estimation results are shown in Table 1. The “DIQ” estimator always performs the

worst, which illustrates the importance of adjusting covariates. When the sample size in-

creases from n = 250 to n = 1000, the MADEs and RMSEs of all other estimators decrease

approximately by half, suggesting that the convergence rates are
√
n. Including the esti-

mated conditional distribution functions in the balancing conditions, “Epy 2” and “Epy 3”

consistently outperform other estimators. By adding moments into the balancing conditions,

“Epy 3” performs slightly better than “Epy 2”. Also, it is noted that the performance of

“Initial” greatly depends on the bandwidth, but “Epy 2” and “Epy 3” are less affected,

which is in line with our discussion in Remark 1.

Example 2: In this example, we use a nonlinear propensity score model

π(X) =
exp (−4 + exp(X1/2) + 1.5(X1 +X2)

2 + sin(X2))

1 + exp (−4 + exp(X1/2) + 1.5(X1 +X2)2 + sin(X2))
,

6For the definition, please see the book by Durret (2019).
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Table 1: MADEs and RMSEs of estimating QTEs for Example 1

hd = 0.5n−1/5 hd = 0.75n−1/5 hd = n−1/5

n = 250 n = 500 n = 1000 n = 250 n = 500 n = 1000 n = 250 n = 500 n = 1000

τ MADE MADE MADE MADE MADE MADE MADE MADE MADE

DIQ 0.4108 0.4115 0.4004 0.4108 0.4115 0.4004 0.4108 0.4115 0.4004

Initial 0.0797 0.0539 0.0359 0.1017 0.0768 0.0590 0.1382 0.1086 0.0831

PLE-IPW 0.1278 0.1046 0.1019 0.1278 0.1046 0.1019 0.1278 0.1046 0.1019

0.25 SLE-IPW 0.0781 0.0566 0.0360 0.0781 0.0566 0.0360 0.0781 0.0566 0.0360

Epy 1 0.1027 0.0676 0.0481 0.1027 0.0676 0.0481 0.1027 0.0676 0.0481

Epy 2 0.0705 0.0478 0.0319 0.0752 0.0507 0.0368 0.0845 0.0549 0.0419

Epy 3 0.0658 0.0462 0.0307 0.0625 0.0472 0.0336 0.0794 0.0533 0.0378

DIQ 0.4809 0.4870 0.4832 0.4809 0.4870 0.4832 0.4809 0.4870 0.4832

Initial 0.0712 0.0518 0.0350 0.0947 0.0688 0.0498 0.1320 0.0949 0.0749

PLE-IPW 0.1128 0.1063 0.0988 0.1128 0.1063 0.0988 0.1128 0.1063 0.0988

0.5 SLE-IPW 0.0814 0.0634 0.0419 0.0814 0.0634 0.0419 0.0814 0.0634 0.0419

Epy 1 0.0858 0.0646 0.0438 0.0858 0.0646 0.0438 0.0858 0.0646 0.0438

Epy 2 0.0627 0.0461 0.0327 0.0670 0.0496 0.0305 0.0742 0.0517 0.0364

Epy 3 0.0616 0.0440 0.0314 0.0649 0.0467 0.0292 0.0703 0.0491 0.0324

DIQ 0.3553 0.3514 0.3573 0.3553 0.3514 0.3573 0.3553 0.3514 0.3573

Initial 0.0650 0.0437 0.0324 0.0834 0.0536 0.0369 0.1042 0.0706 0.0481

PLE-IPW 0.1069 0.0852 0.0767 0.1069 0.0852 0.0767 0.1069 0.0852 0.0767

0.75 SLE-IPW 0.0666 0.0482 0.0346 0.0666 0.0482 0.0346 0.0666 0.0482 0.0346

Epy 1 0.0952 0.0678 0.0464 0.0952 0.0678 0.0464 0.0952 0.0678 0.0464

Epy 2 0.0591 0.0423 0.0292 0.0655 0.0444 0.0307 0.0649 0.0479 0.0334

Epy 3 0.0516 0.0419 0.0291 0.0644 0.0433 0.0302 0.0638 0.0472 0.0324

hd = 0.5n−1/5 hd = 0.75n−1/5 hd = n−1/5

n = 250 n = 500 n = 1000 n = 250 n = 500 n = 1000 n = 250 n = 500 n = 1000

RMSE RMSE RMSE RMSE RMSE RMSE RMSE RMSE RMSE

DIQ 0.4729 0.4406 0.4173 0.4729 0.4406 0.4173 0.4729 0.4406 0.4173

Initial 0.1214 0.0805 0.0541 0.1458 0.1017 0.0765 0.1881 0.1414 0.1031

PLE-IPW 0.1775 0.1411 0.1192 0.1775 0.1411 0.1192 0.1775 0.1411 0.1192

0.25 SLE-IPW 0.1220 0.0858 0.0550 0.1220 0.0858 0.0550 0.1220 0.0858 0.0550

Epy 1 0.1561 0.1026 0.0703 0.1561 0.1026 0.0703 0.1561 0.1026 0.0703

Epy 2 0.1069 0.0712 0.0471 0.1090 0.0728 0.0527 0.1183 0.0786 0.0542

Epy 3 0.1055 0.0701 0.0459 0.1061 0.0692 0.0490 0.1120 0.0780 0.0531

DIQ 0.5309 0.5079 0.4925 0.5309 0.5079 0.4925 0.5309 0.5079 0.4925

Initial 0.1063 0.0748 0.0514 0.1328 0.0968 0.0679 0.1714 0.1256 0.0934

PLE-IPW 0.1633 0.1405 0.1195 0.1633 0.1405 0.1195 0.1633 0.1405 0.1195

0.5 SLE-IPW 0.1200 0.0917 0.0627 0.1200 0.0917 0.0627 0.1200 0.0917 0.0627

Epy 1 0.1229 0.0933 0.0640 0.1229 0.0933 0.0640 0.1229 0.0933 0.0640

Epy 2 0.0968 0.0657 0.0479 0.0987 0.0727 0.0486 0.1102 0.0766 0.0488

Epy 3 0.0915 0.0620 0.0434 0.0955 0.0697 0.0462 0.1052 0.0714 0.0477

DIQ 0.3977 0.3766 0.3687 0.3977 0.3766 0.3687 0.3977 0.3766 0.3687

Initial 0.0989 0.0703 0.0470 0.1204 0.0806 0.0549 0.1466 0.1028 0.0694

PLE-IPW 0.1565 0.1232 0.1024 0.1565 0.1232 0.1024 0.1565 0.1232 0.1024

0.75 SLE-IPW 0.1004 0.0749 0.0513 0.1004 0.0749 0.0513 0.1004 0.0749 0.0513

Epy 1 0.1400 0.1027 0.0680 0.1400 0.1027 0.0680 0.1400 0.1027 0.0680

Epy 2 0.0924 0.0637 0.0426 0.0995 0.0667 0.0440 0.1066 0.0701 0.0486

Epy 3 0.0929 0.0636 0.0417 0.0929 0.0653 0.0439 0.1050 0.0694 0.0474
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and all other settings are the same as in Example 1. Through simulation, one can observe

that approximately 13.59% of the samples have a propensity score less than 0.1, and 6.95%

have a propensity score greater than 0.9. Therefore, we anticipate that the IPW estimators

may not perform well for this example. The estimation results are reported in Table 2.

It can be seen that “PLE-IPW” has large MADEs and RMSEs due to misspecification of

the propensity score model. “Epy 2” and “Epy 3” significantly outperform “PLE-IPW”

and “SLE-IPW”, especially when the sample size is small, which is in accordance with our

anticipation. Other conclusions are similar to those as in Example 1.

Example 3: In this example, we consider the case of p = 8. Let the DGP be

Y (0) =
7󰁛

j=1

βjXj + 0.4
󰁳

U0X8 and Y (1) =
7󰁛

j=1

βjXj + 1.6
󰁳

U1X8,

where D ∼ binomial(π(X)), U0, U1 and X1, · · · , X8 are independently drawn from the

uniform U(0, 1), β = (−2, 0.75,−1, 1.5,−2, 0.75,−1), and the true propensity score model

is:

π(X) =
exp (−2 +

󰁓8
j=1 γjXj)

1 + exp (−2 +
󰁓8

j=1 γjXj)
,

where γ = (2,−0.75, 1,−1.5, 2,−0.75, 1,−1.5). For this example, the kernel estimator for

the conditional distribution functions is not applicable, so the quantile regression method

presented in Section 2.5 is used. The simulation results are reported in Table 3. It can

be seen that “Epy 2” performs better than “DIQ”, “Initial”, “PLE-IPW” and “Epy 1”,

and is close to “SLE-IPW”. By adding the moments into the balancing conditions, “Epy 3”

performs better than “Epy 2”, and can outperform “SLE-IPW”.

For all three examples, Table 4 reports the realized coverage rates (CR) of point-wise

confidence intervals with nominal coverage level 90% for the proposed QTE estimators “Epy

2” and “Epy 3”, using the Bootstrap method proposed in Section 3.1 with B = 1000. It can

be seen that as the sample size increases to n = 1000, the proposed Bootstrap method can

produce confidence intervals with good coverage probabilities.

4.2 Performance of Testing Stochastic Dominance

In this section, we use simulations to demonstrate the size and power of the stochastic

dominance test proposed in Section 3.2. We estimate the counterfactual distributions using

“Epy 2” and “Epy 3” as described in Section 4.1, respectively. Our proposed tests are
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Table 2: MADEs and RMSEs of estimating QTEs for Example 2

hd = 0.5n−1/5 hd = 0.75n−1/5 hd = n−1/5

n = 250 n = 500 n = 1000 n = 250 n = 500 n = 1000 n = 250 n = 500 n = 1000

τ MADE MADE MADE MADE MADE MADE MADE MADE MADE

DIQ 1.1801 1.1702 0.9549 1.1801 1.1702 0.9549 1.1801 1.1702 0.9549

Initial 0.1601 0.0933 0.0475 0.2041 0.1580 0.1173 0.3411 0.2730 0.1613

PLE-IPW 0.3848 0.3834 0.2752 0.3848 0.3834 0.2752 0.3848 0.3834 0.2752

0.25 SLE-IPW 0.1418 0.0916 0.0505 0.1418 0.0916 0.0505 0.1418 0.0916 0.0505

Epy 1 0.1331 0.0992 0.0726 0.1331 0.0992 0.0726 0.1331 0.0992 0.0726

Epy 2 0.1114 0.0673 0.0401 0.1067 0.0801 0.0480 0.1120 0.0832 0.0484

Epy 3 0.1174 0.0507 0.0383 0.1023 0.0658 0.0453 0.1016 0.0718 0.0428

DIQ 1.1918 1.1910 1.0195 1.1918 1.1910 1.0195 1.1918 1.1910 1.0195

Initial 0.1172 0.0629 0.0341 0.1909 0.1365 0.0824 0.3274 0.2527 0.1303

PLE-IPW 0.3384 0.3358 0.2711 0.3384 0.3358 0.2711 0.3384 0.3358 0.2711

0.5 SLE-IPW 0.1153 0.0924 0.0643 0.1153 0.0924 0.0643 0.1153 0.0924 0.0643

Epy 1 0.1072 0.0787 0.0590 0.1072 0.0787 0.0590 0.1072 0.0787 0.0590

Epy 2 0.0784 0.0660 0.0519 0.0878 0.0703 0.0571 0.0951 0.0711 0.0654

Epy 3 0.0786 0.0572 0.0474 0.0833 0.0570 0.0431 0.0948 0.0675 0.0536

DIQ 0.9834 0.9939 0.8503 0.9834 0.9939 0.8503 0.9834 0.9939 0.8503

Initial 0.1816 0.1366 0.0790 0.2560 0.2035 0.1656 0.3660 0.3011 0.1964

PLE-IPW 0.3420 0.3214 0.2717 0.3420 0.3214 0.2717 0.3420 0.3214 0.2717

0.75 SLE-IPW 0.1100 0.0879 0.0526 0.1100 0.0879 0.0526 0.1100 0.0879 0.0526

Epy 1 0.1185 0.0942 0.0799 0.1185 0.0942 0.0799 0.1185 0.0942 0.0799

Epy 2 0.0915 0.0578 0.0489 0.0851 0.0547 0.0452 0.0877 0.0580 0.0455

Epy 3 0.0852 0.0506 0.0471 0.0785 0.0450 0.0447 0.0842 0.0560 0.0427

hd = 0.5n−1/5 hd = 0.75n−1/5 hd = n−1/5

n = 250 n = 500 n = 1000 n = 250 n = 500 n = 1000 n = 250 n = 500 n = 1000

RMSE RMSE RMSE RMSE RMSE RMSE RMSE RMSE RMSE

DIQ 1.1932 1.1800 0.9578 1.1932 1.1800 0.9578 1.1932 1.1800 0.9578

Initial 0.2222 0.1391 0.0690 0.2598 0.1938 0.1389 0.3806 0.2942 0.1746

PLE-IPW 0.4181 0.4014 0.2867 0.4181 0.4014 0.2867 0.4181 0.4014 0.2867

0.25 SLE-IPW 0.2386 0.1477 0.0779 0.2386 0.1477 0.0779 0.2386 0.1477 0.0779

Epy 1 0.1983 0.1463 0.1057 0.1983 0.1463 0.1057 0.1983 0.1463 0.1057

Epy 2 0.1689 0.1065 0.0591 0.1590 0.1175 0.0729 0.1682 0.1237 0.0737

Epy 3 0.1844 0.0979 0.0582 0.1538 0.1019 0.0683 0.1582 0.1035 0.0661

DIQ 1.2011 1.1972 1.0226 1.2011 1.1972 1.0226 1.2011 1.1972 1.0226

Initial 0.1646 0.0966 0.0521 0.2228 0.1578 0.1013 0.3508 0.2659 0.1434

PLE-IPW 0.3870 0.3620 0.2825 0.3870 0.3620 0.2825 0.3870 0.3620 0.2825

0.5 SLE-IPW 0.2154 0.1463 0.0933 0.2154 0.1463 0.0933 0.2154 0.1463 0.0933

Epy 1 0.1631 0.1153 0.0867 0.1631 0.1153 0.0867 0.1631 0.1153 0.0867

Epy 2 0.1259 0.0938 0.0697 0.1290 0.1013 0.0774 0.1396 0.1023 0.0862

Epy 3 0.1281 0.0842 0.0636 0.1232 0.0911 0.0709 0.1427 0.0994 0.0790

DIQ 0.9948 0.9981 0.8554 0.9948 0.9981 0.8554 0.9948 0.9981 0.8554

Initial 0.2153 0.1567 0.0922 0.2742 0.2163 0.1726 0.3812 0.3073 0.2024

PLE-IPW 0.3800 0.3484 0.2846 0.3800 0.3484 0.2846 0.3800 0.3484 0.2846

0.75 SLE-IPW 0.1791 0.1298 0.0620 0.1791 0.1298 0.0620 0.1791 0.1298 0.0620

Epy 1 0.1701 0.1317 0.1062 0.1701 0.1317 0.1062 0.1701 0.1317 0.1062

Epy 2 0.1468 0.0878 0.0527 0.1280 0.0810 0.0519 0.1331 0.0886 0.0539

Epy 3 0.1339 0.0839 0.0524 0.1219 0.0755 0.0427 0.1267 0.0792 0.0479
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Table 3: MADEs and RMSEs of estimating QTEs for Example 3

n = 250 n = 500 n = 1000

τ MADE RMSE MADE RMSE MADE RMSE

DIQ 0.9499 0.9394 0.9401 0.8934 0.9509 0.9192

Initial 0.1924 0.2593 0.1479 0.1768 0.1207 0.1376

PLE-IPW 0.2150 0.3376 0.1811 0.2470 0.1726 0.2107

0.25 SLE-IPW 0.1143 0.1856 0.0665 0.1032 0.0458 0.0696

Epy 1 0.1357 0.2066 0.0871 0.1288 0.0706 0.1002

Epy 2 0.1057 0.1607 0.0688 0.1006 0.0577 0.0790

Epy 3 0.0987 0.1507 0.0581 0.0882 0.0399 0.0591

DIQ 0.9732 0.9763 0.9675 0.9571 0.9764 0.9643

Initial 0.2285 0.2610 0.1676 0.1876 0.1415 0.1507

PLE-IPW 0.1216 0.2139 0.0973 0.1450 0.0893 0.1187

0.5 SLE-IPW 0.1002 0.1512 0.0588 0.0898 0.0449 0.0640

Epy 1 0.1001 0.1505 0.0646 0.0989 0.0483 0.0709

Epy 2 0.0837 0.1240 0.0523 0.0799 0.0395 0.0585

Epy 3 0.0843 0.1230 0.0505 0.0746 0.0339 0.0502

DIQ 0.9937 1.0160 0.9762 0.9741 0.9787 0.9675

Initial 0.1971 0.2288 0.1510 0.1689 0.1234 0.1329

PLE-IPW 0.0922 0.1383 0.0620 0.0915 0.0422 0.0656

0.75 SLE-IPW 0.0784 0.1203 0.0495 0.0710 0.0363 0.0508

Epy 1 0.1192 0.1684 0.0833 0.1157 0.0638 0.0903

Epy 2 0.0822 0.1241 0.0528 0.0773 0.0445 0.0617

Epy 3 0.0797 0.1197 0.0485 0.0679 0.0296 0.0463

Table 4: Realized coverage rates for Examples 1, 2 and 3 with the nominal coverage level is
90%

τ = 0.25 τ = 0.5 τ = 0.75

n Epy 2 Epy 3 Epy 2 Epy 3 Epy 2 Epy 3

250 0.929 0.934 0.927 0.931 0.928 0.934

Example 1 500 0.908 0.911 0.909 0.914 0.910 0.919

1000 0.897 0.898 0.900 0.901 0.899 0.901

250 0.932 0.936 0.915 0.917 0.906 0.909

Example 2 500 0.917 0.921 0.911 0.916 0.903 0.905

1000 0.901 0.903 0.900 0.901 0.897 0.898

250 0.946 0.952 0.937 0.941 0.926 0.932

Example 3 500 0.934 0.941 0.924 0.927 0.916 0.925

1000 0.906 0.910 0.907 0.909 0.905 0.911
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compared with the “SLE-IPW” method, which estimates counterfactual distributions using

the IPW approach, with the propensity score being estimated by a series logit estimator,

and obtains the critical value using nonparametric Bootstrap. We also compare our tests

with the method proposed by Donald and Hsu (2014), denoted as “SLE-IPW-m”, which

also estimates the propensity score by the series logit estimator but derives the critical value

using the multiplier Bootstrap.

In the testing procedure, when use the method proposed in Section 2.1 to estimate Fd(y),

the Epanechnikov kernel is used and the bandwidth is set as hd = 0.5 · n−1/(4+p) for d = 0

and 1. We also set J = 50 and let q1 < q2 < · · · < q50 be 50 equally spaced points across

the entire range of the observable outcomes. The number of Bootstrap repetitions is set

to B = 1000. For each simulation, the rejected rates are estimated by conducting 1000

independent experiments. The results are reported in Table 5.

Example 4: We use the same data-generating process as in Example 1. In this setting,

F1(y) < F0(y) for all y ∈ Y . It is the case that the null hypothesis H0 : Y (1) SD1 Y (0)

holds. This example is used to examine the test size of the proposed test. The top panel in

Table 5 shows that all testing methods have rejection rates close to zero across all considered

sample sizes.

Example 5: In this example, we consider the case that F1(y) = F0(y) for all y ∈ Y .

Following Donald and Hsu (2014), let the DGP be

X = 0.3 + 0.4Ux, Y (0) = 1 (U0 ≤ X)U2
0/X + 1 (U0 > X)U0,

Y (1) = 1 (U1 ≤ 1−X)U2
1/(1−X)2 + 1 (U1 > 1−X)U1,

where D = 1 (U < X) and Ux, U0, U1 and U are independent uniform distributions over

[0, 1]. The middle panel in Table 5 demonstrates that both “SLE-IPW” and “SLE-IPW-m”

are conservative when the sample size is small, but their empirical sizes get closer to the

nominal level as the sample size increases. Compared to “SLE-IPW” and “SLE-IPW-m”,

our testing methods exhibit slightly higher empirical sizes that are closer to the nominal

levels at the same sample size. As the sample size increases, the empirical sizes of our

methods also converge to the nominal level.

Example 6: To examine the power of our proposed tests, we consider the case such that the

null hypothesis does not hold. Following Donald and Hsu (2014), let the potential outcomes

26



be generated by

Y (0) = U0, Y (1) = 1 (U1 ≤ X)U2
1/X + 1 (U1 > X)U1.

In this example, it can be shown that F1(y) > F0(y) for all 0 < y < 0.7 and F1(y) = F0(y)

for all y ≥ 0.7. The bottom panel in Table 5 illustrates that the powers for all test methods

increase with the increase of sample size. When n = 1000, the powers of our proposed test

are exactly 1, which is consistent with the results in Proposition 5. Compared to “SLE-IPW”

and “SLE-IPW-m”, the powers of our test are larger under the same sample size.

Table 5: Rejection rates of testing stochastic dominance for Examples 4 (the top panel), 5
(the middle panel) and 6 (the bottom panel)

α = 0.05 α = 0.10

n SLE-IPW SLE-IPW-m Epy 2 Epy 3 SLE-IPW SLE-IPW-m Epy 2 Epy 3

250 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

4 500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

250 0.041 0.032 0.068 0.060 0.078 0.080 0.110 0.112

5 500 0.042 0.044 0.058 0.052 0.077 0.096 0.106 0.102

1000 0.052 0.054 0.052 0.050 0.108 0.102 0.103 0.101

250 0.502 0.540 0.556 0.554 0.674 0.696 0.724 0.724

6 500 0.838 0.830 0.884 0.840 0.938 0.936 0.952 0.952

1000 0.997 0.996 1.000 1.000 0.999 1.000 1.000 1.000

5 An Empirical Example

In this section, we apply the proposed methods to analyze the distributional effect of

maternal smoking during pregnancy on infant birth weight. Low birth weight causes a

range of subsequent adverse health problems and increased health care costs and is also

linked to later educational attainment and labor market outcomes as addressed in Almond

et al. (2005), Black et al. (2007) and references therein. Therefore, this issue should be of

concern to policy makers. Smoking is generally recognized as one of the main modifiable risk

factors for low birth weight, and many studies have attempted to estimate its causal effect

as investigated by Abrevaya (2006), Abrevaya et al. (2015), and Tang et al. (2021).
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5.1 Data Description

We use a subsample of the dataset published by the North Carolina State Center Health

Services. Abrevaya et al. (2015) and Tang et al. (2021) gave a more extensive study to the full

data set. The subsample we are using was recorded in 2002, which includes 26, 739 first-time

white mothers who gave birth to a live single baby, 3960 (14.81%) of whom smoked during

pregnancy. For each mother, we record whether she smoked, the infant’s birth weight (in

grams), and other 14 variables that might confound the relationship between birth weight

and the mother’s smoking decision. These variables include the mother’s age, education,

the month of first prenatal visit, the number of prenatal visits, weight gain during the

pregnancy (in pounds), and indicators for the baby’s gender, the mother’s marital status,

whether or not the father’s age is missing, gestational diabetes, hypertension, amniocentesis,

ultrasound exams, previous (terminated) pregnancies, and alcohol use. Table 6 presents

some descriptive statistics for this dataset. Figure 1 shows the kernel density plots of birth

Table 6: Descriptive Statistics

Mean Sd Max 75% Median 25% Min

Birth weight 3334.45 582.94 5840.01 3713.79 3373.59 3033.40 198.45

Smoking 0.15 0.36 - - - - -

Mother’s age 25.72 5.86 46 30 26 21 12

Mother’s weight gain 34.51 13.27 98 42 34 25 1

Mother’s education 13.68 2.41 17 16 14 12 2

1st Prenatal 2.07 1.07 9 2 2 1 0

# Prenatal 13.17 3.43 49 15 13 11 0

Male baby 0.52 0.50 1 - - - 0

Mother’s marital status 0.73 0.45 1 - - - 0

Miss father’s age 0.10 0.30 1 - - - 0

Diabetes 0.02 0.16 1 - - - 0

Hypertension 0.08 0.27 1 - - - 0

Amniocentesis 0.01 0.11 1 - - - 0

Ultra sound exams 0.79 0.41 1 - - - 0

# Terminated 0.25 0.62 12 0 0 0 0

Alcohol use 0.01 0.08 1 - - - 0

NOTE: Birth weight is measured in grams, mother’s weight gain is measured in pounds, mother’s
education is measured in years, and “# Prenatal” denotes the number of prenatal visits.

weight for smoking and non-smoking mothers. It can be seen from Figure 1 that the two

distributions of the infant weight for smoking and non-smoking mothers are different. Table
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7 gives the results for the symmetry test. Both the density plots and symmetry tests indicate

that birth weight distributions are skewed to the left with a thick tail. Therefore, in addition

to the average treatment effect, the distributional effect of maternal smoking on infant birth

weight can provide a better understanding on how smoking has an effect on the infant weight,

in particular, on low infant weights.

Figure 1: The density plots of infant birth weights for nonsmoking mother (solid line) and
smoking mother (dot-dashed line).

Table 7: Symmetry Test Results

Non-smoking Smoking

Average birth weight 3372.34 3116.53

Skewness -0.88 -0.85

Kurtosis 5.96 5.14

Symmetry test (p-value) 0.00 0.00

Number of observations 22779 3960
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5.2 Empirical Results

To assess the performance of the proposed estimator, we consider three different scenar-

ios to estimate the quantile treatment effects. In the first two scenarios, we generate the

pseudo population by mimicking the original data to know the true QTE and compare the

performance of our method with other methods. In the last scenario, we use all original data

to revisit the effect of maternal smoking on the infant’s birth weight.

Scenario 1: We consider three covariates, the same as those in Rothe (2010), which are

the mother’s age, weight gain during the pregnancy (in pounds), and whether the mother is

married. To mimic the original data, we keep the covariates X and the treatment variable D,

and generate potential outcomes by Y (0) = 2911.19 + 4.16X1 + 9.92X2 + 64.23X3 + ε0, and

Y (1) = 2758.78+2.31X1+10.32X2+143.96X3+ε1, where ε0 and ε1 are independently drawn

from N(0, 100), the coefficients are derived from the linear regression based on the original

data. Then, the observable outcomes are obtained by letting Y = DY (1)+ (1−D)Y (0) and

thus, we can get a population data {Yi, Yi(1), Yi(0), Xi, Di}Ni=1 with N = 26, 739. The true

quantile treatment effects are plotted in Figure 2 (the left panel). We draw n samples from

this population independently and consider n = 1000, 2000, 4000. The kernel method is used

to estimate conditional CDF, and the bandwidths are set as hd = 2n
−1/7
d for d = 0 and 1.

Same as in Section 4.1, we compare our estimators, “Epy 2” and “Epy 3”, against “DIQ”,

“Initial”, “PLE-IPW”, “SLE-IPW” and “Epy 1”. The estimation results are reported in

Table 8, from which, it can be seen that our estimators always outperform the others.

Scenario 2: Following Abrevaya et al. (2015), we consider 13 covariates, which are the

mother’s age, education, month of first prenatal visit, number of prenatal visits, and in-

dicators for the baby’s gender, the mother’s marital status, whether or not the father’s

age is missing, gestational diabetes, hypertension, amniocentesis, ultrasound exams, pre-

vious (terminated) pregnancies, and alcohol use. Again, we keep the covariates X and

the treatment variable D. The potential outcomes are generated by Y (0) = 2705.85 +

XTβ0 + ε0 and Y (1) = 2245.04+XTβ1 + ε1, where ε0 and ε1 are independently drawn from

N(0, 100), βT
0 = (−2.17, 12.12, 35.27, 30.89, 125.91, 37.77,−41.29,−24.63,−276.69,−109.09,

12.33,−22.57, 101.37), and βT
1 = (−7.81, 32.72, 42.26, 40.03, 134.51, 35.77, 1.90, 72.01,−166.84,

−164.85,−9.27,−19.70, 120.76). The true quantile treatment effects are plotted in Figure

2 (the right figure). We estimate conditional CDF by quantile regression. The estimation

results are shown in Table 9. In this scenario, our estimators still consistently outperform
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Figure 2: True quantile treatment effects in Scenario 1 (left panel) and in Scenario 2 (right
panel).

the other estimators.

Scenario 3: Finally, we use the original data and consider all 14 covariates. We consider

τ ∈ {0.1, 0.2, 0.3, · · · , 0.9} and estimate the conditional CDF by quantile regression. The

quantile effect of maternal smoking on the baby’s birth weight is estimated by our method.

Figure 3 shows the estimation of the average treatment effect7 (-209.73, dot-dashed line) and

quantile treatment effect (solid line) together with simultaneously 90% confidence bands

(light-gray area) via the Bootstrap with B = 1000 replications. The graph shows that

maternal smoking was associated with lower birth weight at all the quantiles considered.

Compared with the average treatment effect, the quantile treatment effects estimates suggest

that low quantiles are significantly affected by maternal smoking particularly. This becomes

evident when we observe that the confidence bands for the quantile treatment effects at the

lower percentiles do not cover the average treatment effect.

In this scenario, we also use the method proposed in Section 3.2 to test if the birth

7The average treatment effect is estimated by parametric logistic model based on the aforementioned
covariates.
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Table 8: Estimation Results for Scenario 1

n = 1000 n = 2000 n = 4000

τ MADE RMSE MADE RMSE MADE RMSE

DIQ 71.1362 72.7177 72.5827 72.5084 72.7478 72.6937

Initial 9.3515 13.4836 6.6527 9.3800 4.8205 6.7126

PLE-IPW 19.9127 25.0024 21.8630 23.5871 21.9972 22.7151

0.25 SLE-IPW 13.0841 20.2038 10.4075 15.6709 11.7496 13.6737

Epy 1 20.7864 25.0819 21.0398 23.5260 22.3840 22.9411

Epy 2 8.6908 13.5351 5.3497 8.1676 3.2366 5.1271

Epy 3 8.2059 12.6224 4.8978 8.0106 3.0685 5.0920

DIQ 56.6225 58.4369 55.9834 57.2361 57.1878 57.1799

Initial 7.4049 11.2639 5.2672 7.5013 3.2460 4.5456

PLE-IPW 11.6670 17.5323 8.3084 11.3372 5.6194 8.0114

0.5 SLE-IPW 11.4304 20.3233 8.2674 12.0240 5.1498 7.7315

Epy 1 10.1178 14.9034 7.3763 10.1802 4.9897 7.1223

Epy 2 7.1303 11.2102 4.5268 6.9034 3.1676 4.2732

Epy 3 6.9942 10.9769 4.3322 6.5027 3.0836 4.1245

DIQ 30.3957 35.9620 28.8384 32.8794 28.4996 30.3816

Initial 8.2750 12.4776 4.8916 7.5742 3.3907 4.9336

PLE-IPW 15.4748 23.5728 11.7182 18.3076 12.3547 16.3067

0.75 SLE-IPW 12.6980 24.0745 8.7673 15.2646 7.9955 12.1334

Epy 1 12.1515 19.0018 10.4945 15.6024 10.4828 13.8020

Epy 2 7.8813 11.9347 4.5421 6.9916 2.8515 4.4476

Epy 3 7.5608 11.5842 4.3293 6.7073 2.5328 4.2188

NOTE: The true coefficients are -134.61, -123.65, -116.06

weight of infants not exposed to maternal smoking first-order stochastically dominates that

of infants exposed to it; that is to test H0 : F0(y) ≤ F1(y). The resulting p-value of 0.79 via

the Bootstrap with B = 1000 replication indicates the presence of this first-order dominance

relationship.

6 Conclusion

This paper introduces a new method for estimating counterfactual distribution functions

based on distributional balancing to avoid the shortcomings of inverse propensity weights.

This method firstly estimates the conditional CDF for the treated and untreated groups

respectively, and then finds the weights of minimum dispersion that exactly balance the

estimated conditional CDF among the treated, the untreated, and the combined group.
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Table 9: Estimation Results for Scenario 2

n = 1000 n = 2000 n = 4000

τ MADE RMSE MADE RMSE MADE RMSE

DIQ 68.2421 70.4947 66.4765 68.1778 67.8673 68.1378

Initial 5.0503 8.3076 4.1248 5.1308 2.7201 4.4752

PLE-IPW 15.7962 24.5687 15.6598 19.4673 16.8518 18.5306

0.25 SLE-IPW 18.0379 37.4340 13.0730 27.5936 9.5234 15.3803

Epy1 11.9371 19.2539 9.0711 13.4618 6.1905 9.2917

Epy2 3.3889 5.1491 2.6188 3.5079 1.7616 2.4892

Epy3 2.9104 5.0456 2.4575 3.3540 1.5936 2.2394

DIQ 71.2544 72.5369 68.7540 70.5491 69.8058 70.3107

Initial 3.3848 5.5056 2.6730 2.4991 1.2304 2.7589

PLE-IPW 18.0137 24.2818 15.7130 18.9276 14.7804 16.9366

0.5 SLE-IPW 25.4774 44.9860 15.9828 28.2061 9.6983 14.9023

Epy1 12.5762 17.8912 8.6639 13.0944 6.8314 9.2330

Epy2 3.3407 5.0234 2.6626 3.5630 1.5336 2.2149

Epy3 3.2068 4.6921 2.3892 3.1718 1.4914 2.1994

DIQ 67.5348 70.8074 68.1728 69.1696 67.4725 67.6378

Initial 3.0072 5.3259 2.4609 4.1770 1.9968 2.5586

PLE-IPW 20.3868 28.6860 16.0568 21.9713 14.7413 17.7386

0.75 SLE-IPW 27.9042 48.0812 19.6444 31.8026 12.1789 17.3446

Epy1 14.8753 22.7379 12.2730 15.5138 7.9605 10.7027

Epy2 3.4066 5.1225 2.5106 4.0738 1.9204 2.8216

Epy3 3.2803 4.9420 2.4368 3.8983 1.5990 2.4658

NOTE: The true coefficients are -201.36, -182.85, -165.36
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Figure 3: The average treatment effect (dot-dashed line) and quantile treatment effects
(solid line) of maternal smoking on infant birth weight, with simultaneously 90%
confidence bands (light-gray area) based on 1000 Bootstrap replications.

These weights are used to estimate the counterfactual distribution functions. We show that

our estimator converges weakly to a Gaussian process with zero mean at the usual parametric

rate of
√
n and a properly designed Bootstrap method can be used to obtain confidence

intervals and conduct inference, together with its theoretical justification. With the estimates

of counterfactual distribution functions, we also provide the methods and theories to estimate

the quantile treatment effects and test the stochastic dominance relationship between the

potential outcome distributions. Monte Carlo simulations demonstrate that our estimator

performs better than the inverse propensity weighting estimator in many scenarios. The

empirical study revisits the effect of maternal smoking on infant birth weights.

As mentioned earlier, some extensions might be interesting, which can be warranted as

future research topics. For example, when covariate Xi is high-dimensional (either p = pn →
∞ but pn/n → 0 or pn ≫ n), it is worth to investigate the asymptotic theory for such cases.

Additionally, note that this paper considers only iid data and it should be extended to the

time series context.

34



Disclosure Statement

We claim that this work is original and has not been published elsewhere nor is it currently

under consideration for publication elsewhere and, also, we declare that we have no known

competing financial interests or personal relationships that could have appeared to influence

the work reported in this paper. Also, the authors declare that they do not use any generative

AI and AI-assisted technologies in the writing process.

References

Abrevaya, J. (2006). Estimating the effect of smoking on birth outcomes using a matched

panel data approach. Journal of Applied Econometrics 21 (4), 489–519.

Abrevaya, J., Y.-C. Hsu, and R. P. Lieli (2015). Estimating conditional average treatment

effects. Journal of Business & Economic Statistics 33 (4), 485–505.

Aı̈t-Shahalia, Y. and M. W. Brant (2001). Variable selection for portfolio choice. Journal of

Finance 56 (4), 1297–1351.

Almond, D., K. Y. Chay, and D. S. Lee (2005). The costs of low birth weight. Quarterly

Journal of Economics 120 (3), 1031–1083.

Anderson, G. (1996). Nonparametric tests of stochastic dominance in income distributions.

Econometrica 65 (4), 1183–1193.

Athey, S., G. W. Imbens, and S. Wager (2018). Approximate residual balancing: Debiased

inference of average treatment effects in high dimensions. Journal of the Royal Statistical

Society: Series B 80 (4), 597–623.

Barrett, G. F. and S. G. Donald (2003). Consistent tests for stochastic dominance. Econo-

metrica 71 (1), 71–104.

Billingsley, P. (1999). Convergence of Probability Measures. Wiley, New Year.

Black, S. E., P. J. Devereux, and K. G. Salvanes (2007). From the cradle to the labor market?

the effect of birth weight on adult outcomes. Quarterly Journal of Economics 122 (1), 409–

439.

Cai, Z., Y. Fang, M. Lin, and Z. Wu (2024). A quasi synthetic control method for nonlinear

models with high-dimensional covariates. Statistica Sinica.

35



Cai, Z., Y. Fang, M. Lin, and M. Zhan (2022). Estimating quantile treatment effects for

panel data. Working Paper , Department of Economics, University of Kansas.

Chan, K. C. G., S. C. P. Yam, and Z. Zhang (2016). Globally efficient non-parametric

inference of average treatment effects by empirical balancing calibration weighting. Journal

of the Royal Statistical Society, Series B 78 (3), 673.

Chernozhukov, V., I. Fernández-Val, and A. Galichon (2010). Quantile and probability

curves without crossing. Econometrica 78 (3), 1093–1125.

Chernozhukov, V., I. Fernández-Val, and B. Melly (2013). Inference on counterfactual dis-

tributions. Econometrica 81 (6), 2205–2268.

Donald, S. G. and Y.-C. Hsu (2014). Estimation and inference for distribution functions and

quantile functions in treatment effect models. Journal of Econometrics 178, 383–397.

Donald, S. G. and Y.-C. Hsu (2016). Improving the power of tests of stochastic dominance.

Econometric Reviews 35 (4), 553–585.

Durret, R. (2019). Probability: Theory and Examples, 5th Edition. Cambridge University

Rress, New York.

Fan, J., K. Imai, I. Lee, H. Liu, Y. Ning, and X. Yang (2023). Optimal covariate balanc-

ing conditions in propensity score estimation. Journal of Business & Economic Statis-

tics 41 (1), 97–110.

Firpo, S. (2007). Efficient semiparametric estimation of quantile treatment effects. Econo-

metrica 75 (1), 259–276.

Hahn, J. (1998). On the role of the propensity score in efficient semiparametric estimation

of average treatment effects. Econometrica, 315–331.

Hainmueller, J. (2012). Entropy balancing for causal effects: A multivariate reweighting

method to produce balanced samples in observational studies. Political Analysis 20 (1),

25–46.

Hall, P. and Q. Yao (2005). Approximating conditional distribution functions using dimen-

sion reduction. Annals of Statistics 33 (3), 1404–1421.

Heckman, J. J., H. Ichimura, and P. E. Todd (1997). Matching as an econometric evaluation

estimator: Evidence from evaluating a job training programme. Review of Economic

Studies 64 (4), 605–654.

36



Hirano, K., G. W. Imbens, and G. Ridder (2003). Efficient estimation of average treatment

effects using the estimated propensity score. Econometrica 71 (4), 1161–1189.

Hsu, Y.-C., T.-C. Lai, and R. P. Lieli (2022). Counterfactual treatment effects: Estimation

and inference. Journal of Business & Economic Statistics 40 (1), 240–255.

Imai, K. and M. Ratkovic (2014). Covariate balancing propensity score. Journal of the Royal

Statistical Society, Series B 76 (1), 243–263.

Josey, K. P., E. Juarez-Colunga, F. Yang, and D. Ghosh (2021). A framework for covariate

balance using Bregman distances. Scandinavian Journal of Statistics 48 (3), 790–816.

Kang, J. D. and J. L. Schafer (2007). Demystifying double robustness: A comparison of

alternative strategies for estimating a population mean from incomplete data. Statistical

Science 22 (4), 523–539.

Koenker, R. and G. Bassett (1978). Regression quantiles. Econometrica 46 (1), 33–50.

LaLonde, R. J. (1995). The promise of public sector-sponsored training programs. Journal

of Economic Perspectives 9 (2), 149–168.

Lehmann, E. L. and J. P. Romano (2005). Testing Statistical Hypotheses, Volume 3. Springer.

Li, F., K. L. Morgan, and A. M. Zaslavsky (2018). Balancing covariates via propensity score

weighting. Journal of the American Statistical Association 113 (521), 390–400.

Linton, O., E. Maasoumi, and Y.-J. Whang (2005). Consistent testing for stochastic domi-

nance under general sampling schemes. Review of Economic Studies 72 (3), 735–765.

Linton, O., M. H. Seo, and Y.-J. Whang (2023). Testing stochastic dominance with many

conditioning variables. Journal of Econometrics 235 (2), 507–527.

Maier, M. (2011). Tests for distributional treatment effects under unconfoundedness. Eco-

nomics Letters 110 (1), 49–51.

Melly, B. (2006). Estimation of counterfactual distributions using quantile regression. Work-

ing Paper, Swiss Institute for International Economics and Applied Economic Research

(SIAW), University of St. Gallen.

Newey, W. K. (1997). Convergence rates and asymptotic normality for series estimators.

Journal of Econometrics 79 (1), 147–168.

37



Ning, Y., P. Sida, and K. Imai (2020). Robust estimation of causal effects via a high-

dimensional covariate balancing propensity score. Biometrika 107 (3), 533–554.

Rosenbaum, P. R. and D. B. Rubin (1983). The central role of the propensity score in

observational studies for causal effects. Biometrika 70 (1), 41–55.

Rothe, C. (2010). Nonparametric estimation of distributional policy effects. Journal of

Econometrics 155 (1), 56–70.

Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandom-

ized studies. Journal of Educational Psychology 66 (5), 688–701.
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A Proofs of Propositions 1 and 2

Proof of Proposition 1: The result is given by Proposition 2 in Rothe (2010). □

Next, we will provide some lemmas for proving Proposition 2. Let 󰀂 · 󰀂2 denote the

spectral norm of a matrix or the L2 norm of a vector.

Lemma 1. (Bernstein’s Inequality.) Let {Ai} be a sequence of independent random

matrices with dimensions d1 × d2. Suppose that E [Ai] = 0 and 󰀂Ai󰀂2 ≤ Rn almost surely.

Define
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Proof of Lemma 1: The result is given by Tropp et al. (2015).

Lemma 2. Under Assumptions 1-7 and 9, one has
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󰀣
1

n

n󰁛
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1(Di = d)󰁨Ud(Xi)󰁨Ud(Xi)
T

󰀤
≥ b1

in probability for some constant b1 > 0. Here d = 0 or 1.
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Proof of Lemma 2: First, we have
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where the first inequality follows from Weyl’s inequality, and the second inequality holds

since νmin

󰀃
1
n

󰁓n
i=1 1(Di = d)Ud(Xi)U1(Xi)

T
󰀄
≥ C4 by Assumption 9 (ii), and for any real

symmetric matrix A, νmax(A) ≤
󰁳

νmax (ATA) = 󰀂A󰀂2.
Next, we focus on the second term in the above equation. We have

󰀐󰀐󰀐󰀐󰀐
1

n

n󰁛

i=1

1(Di = d)Ud(Xi)Ud(Xi)
T − 1

n

n󰁛

i=1

1(Di = d)󰁨Ud(Xi)󰁨Ud(Xi)
T

󰀐󰀐󰀐󰀐󰀐
2

≤ sup
i

󰀐󰀐󰀐Ud(Xi)Ud(Xi)
T − 󰁨Ud(Xi)󰁨Ud(Xi)

T
󰀐󰀐󰀐
2

≤ sup
i

󰀐󰀐󰀐󰀐
󰁫
󰁨Ud(Xi)−Ud(Xi)

󰁬 󰁫
󰁨Ud(Xi)−Ud(Xi)

󰁬T󰀐󰀐󰀐󰀐
2

+ sup
i

󰀐󰀐󰀐
󰁫
󰁨Ud(Xi)−Ud(Xi)

󰁬
Ud(Xi)

T
󰀐󰀐󰀐
2

+ sup
i

󰀐󰀐󰀐󰀐Ud(Xi)
󰁫
󰁨Ud(Xi)−Ud(Xi)

󰁬T󰀐󰀐󰀐󰀐
2

=sup
i

󰀐󰀐󰀐󰁨Ud(Xi)−Ud(Xi)
󰀐󰀐󰀐
2

2
+ 2 sup

i

󰀓󰀐󰀐󰀐󰁨Ud(Xi)−Ud(Xi)
󰀐󰀐󰀐
2
󰀂Ud(Xi)󰀂2

󰀔

≤J sup
i

sup
j

󰀏󰀏󰀏 󰁨F (qj |Xi)− F (qj |Xi)
󰀏󰀏󰀏
2

+ 2
√
J sup

i
sup
j

󰀏󰀏󰀏 󰁨F (qj |Xi)− F (qj |Xi)
󰀏󰀏󰀏 sup

i
󰀂Ud(Xi)󰀂2

=Op

󰀳

󰁃J

󰀣󰀕
log n

nhp
d

󰀖1/2

+ h2
d

󰀤2
󰀴

󰁄+Op

󰀣
J1/2M1/2

󰀣󰀕
log n

nhp
d

󰀖1/2

+ h2
d

󰀤󰀤

=op(1). (A.2)

The last equality holds according to Assumptions 7 and 9. Finally, combining (A.1) and

A2



(A.2) leads to the result in Lemma 2.

Lemma 3. For d = 0 and 1, let 󰁨G′
n,d(λ

∗
d) denote the first derivative of 󰁨Gn,d(λd) at λ∗

d =

argmaxλd
G∗

d(λd). Under Assumptions 1-10, we have

󰀐󰀐󰀐 󰁨G′
n,d(λ

∗
d)
󰀐󰀐󰀐
2
= Op

󰀓√
MJn−(1/4+s/2)

󰀔
.

Proof of Lemma 3: Recall that

G∗
d(λd) = E

󰀅
1(Di = d)ρ

󰀃
Ud(X)Tλd

󰀄󰀆
− E

󰀅
Ud(X)Tλd

󰀆
,

and

󰁨Gn,d(λd) =
1

n

n󰁛

i=1

1(Di = d)ρ
󰀓
󰁨Ud(Xi)

Tλd

󰀔
− 1

n

n󰁛

i=1

󰁨Ud(Xi)
Tλd.

By the mean value theorem, we have

󰁨G′
n,d(λ

∗
d) =

1

n

󰁛

i

1(Di = d)ρ′
󰀓
󰁨Ud(Xi)

Tλ∗
d

󰀔
󰁨Ud(Xi)−

1

n

󰁛

i

󰁨Ud(Xi)

=
1

n

󰁛

i

󰀝
1(Di = d)

󰀗
ρ′
󰀃
Ud(Xi)

Tλ∗
d

󰀄
+ ρ′′ (ξi)

󰁫
󰁨Ud(Xi)−Ud(Xi)

󰁬T
λ∗

d

󰀘

×
󰁫
󰁨Ud(Xi)−Ud(Xi) +Ud(Xi)

󰁬󰁲
− 1

n

󰁛

i

󰁫
󰁨Ud(Xi)−Ud(Xi) +Ud(Xi)

󰁬

=
1

n

󰁛

i

󰀅
1(Di = d)ρ′

󰀃
Ud(Xi)

Tλ∗
d

󰀄
− 1

󰀆
Ud(Xi)

+
1

n

󰁛

i

󰀅
1(Di = d)ρ′

󰀃
Ud(Xi)

Tλ∗
d

󰀄
− 1

󰀆 󰁫 󰁨Ud(Xi)−Ud(Xi)
󰁬

+
1

n

󰁛

i

1(Di = d)ρ′′ (ξi)
󰁫
󰁨Ud(Xi)−Ud(Xi)

󰁬T
λ∗

d

󰁫
󰁨Ud(Xi)−Ud(Xi)

󰁬

+
1

n

󰁛

i

1(Di = d)ρ′′ (ξi)
󰁫
󰁨Ud(Xi)−Ud(Xi)

󰁬T
λ∗

dUd(Xi)

:=I1 + I2 + I3 + I4, (A.3)

where ξi is a point between 󰁨Ud(Xi)
Tλ∗

d and Ud(Xi)
Tλ∗

d. In the following, we will consider

the orders of the terms I1 to I4.

We first consider the term I1. Define

Ai =
1

n

󰀅
1(Di = d)ρ′

󰀃
Ud(Xi)

Tλ∗
d

󰀄
− 1

󰀆
Ud(Xi),
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which is an M × 1 vector. Note that λ∗
d is the unique maximizer of G∗

d (λd), which implies

(G∗
d)

′ (λ∗
d) = E

󰀋󰀅
1(D = d)ρ′

󰀃
Ud(X)Tλ∗

d

󰀄
− 1

󰀆
Ud(X)

󰀌
= 0. (A.4)

Hence, E [Ai] = 0. We also have

󰀂Ai󰀂2 =
󰀐󰀐󰀐󰀐
1

n

󰁫
1(Di = d)ρ′

󰀓
Ud (Xi)

T λ∗
d

󰀔
− 1

󰁬
Ud (Xi)

󰀐󰀐󰀐󰀐
2

≤ 1

n
sup
i

󰀏󰀏󰀏1(Di = d)ρ′
󰀓
Ud (Xi)

T λ∗
d

󰀔
− 1

󰀏󰀏󰀏 sup
x∈X

󰀂Ud (x)󰀂2 ≤
b2
√
M

n
, (A.5)

󰀐󰀐󰀐󰀐󰀐

n󰁛

i=1

E
󰀃
AT

i Ai

󰀄
󰀐󰀐󰀐󰀐󰀐
2

=

󰀐󰀐󰀐󰀐󰀐

n󰁛

i=1

E
󰀝

1

n2

󰁫
1(Di = d)ρ′

󰀓
Ud (Xi)

T λ∗
d

󰀔
− 1

󰁬2
Ud (Xi)

T Ud (Xi)

󰀞󰀐󰀐󰀐󰀐󰀐
2

≤ 1

n
sup
i

󰁫
1(Di = d)ρ′

󰀓
Ud (Xi)

T λ∗
d

󰀔
− 1

󰁬2
E
󰁫
Ud (X)T Ud (X)

󰁬
≤ b3

n
,

(A.6)

and
󰀐󰀐󰀐󰀐󰀐

n󰁛

i=1

E
󰀃
AiA

T
i

󰀄
󰀐󰀐󰀐󰀐󰀐
2

=

󰀐󰀐󰀐󰀐󰀐

n󰁛

i=1

E
󰀝

1

n2

󰁫
1(Di = d)ρ′

󰀓
Ud (Xi)

T λ∗
d

󰀔
− 1

󰁬2
Ud (Xi)Ud (Xi)

T

󰀞󰀐󰀐󰀐󰀐󰀐
2

≤ 1

n
sup
i

󰁫
1(Di = d)ρ′

󰀓
Ud (Xi)

T λ∗
d

󰀔
− 1

󰁬2 󰀐󰀐󰀐E
󰀓
Ud (X)Ud (X)T

󰀔󰀐󰀐󰀐
2
,

≤ 1

n
sup
i

󰁫
1(Di = d)ρ′

󰀓
Ud (Xi)

T λ∗
d

󰀔
− 1

󰁬2
E
󰀓
Ud (X)T Ud (X)

󰀔
≤ b3

n
,

(A.7)

for some constants b2 > 0 and b3 > 0. By Lemma 1, combining (A.4), (A.5), (A.6) and (A.7)

leads to

P {󰀂I1󰀂2 ≥ t} = P

󰀫󰀐󰀐󰀐󰀐󰀐

n󰁛

i=1

Ai

󰀐󰀐󰀐󰀐󰀐
2

≥ t

󰀬
≤ (M + 1) exp

󰀕
− n t2/2

b3 + b2
√
M · t/3

󰀖

= exp

󰀕
log(M + 1)− n t2/2

b3 + b2
√
M · t/3

󰀖
,

which tends to zero when t = c
√
M log n/n for any c > 0 and n goes to infinity. Therefore,

we have

󰀂I1󰀂2 = Op(
√
M log n/

√
n). (A.8)
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For the term I2, one can obtain that

󰀂I2󰀂2 =

󰀐󰀐󰀐󰀐󰀐
1

n

󰁛

i

󰁫
1(Di = d)ρ′

󰀓
Ud (Xi)

T λ∗
d

󰀔
− 1

󰁬 󰁫
󰁨Ud (Xi)−Ud (Xi)

󰁬󰀐󰀐󰀐󰀐󰀐
2

=

󰀐󰀐󰀐󰀐󰀐
1

n

󰁛

i

󰁫
1(Di = d)ρ′

󰀓
Ud (Xi)

T λ∗
d

󰀔
− 1

󰁬 󰁫
󰁨F1(q|Xi)− F1(q|Xi)

󰁬󰀐󰀐󰀐󰀐󰀐
2

≤
√
J sup

i

󰀏󰀏󰀏1(Di = d)ρ′
󰀓
Ud (Xi)

T λ∗
d

󰀔
− 1

󰀏󰀏󰀏 · sup
i

sup
j

󰀏󰀏󰀏 󰁨F1(qj|Xi)− F1(qj|Xi)
󰀏󰀏󰀏

=Op

󰀣
√
J

󰀣󰀕
log n

nhp
d

󰀖1/2

+ h2
d

󰀤󰀤
= Op

󰀃
J1/2n−(1/4+s/2)

󰀄
, (A.9)

by Proposition 1, Assumption 7, and the boundedness of ρ′(·) in Assumption 8.

Next, for the term I3, we have

󰀂I3󰀂2 =

󰀐󰀐󰀐󰀐󰀐
1

n

󰁛

i

1(Di = d)ρ′′ (ξi)
󰁫
󰁨Ud (Xi)−Ud (Xi)

󰁬T
λ∗

d

󰁫
󰁨Ud (Xi)−Ud (Xi)

󰁬󰀐󰀐󰀐󰀐󰀐
2

=

󰀐󰀐󰀐󰀐󰀐
1

n

󰁛

i

1(Di = d)ρ′′ (ξi)
󰁫
󰁨F1(q|Xi)− F1(q|Xi)

󰁬T
λ∗

d,J

󰁫
󰁨F1(q|Xi)− F1(q|Xi)

󰁬󰀐󰀐󰀐󰀐󰀐
2

≤ sup
i

|Diρ
′′ (ξi)| ·

󰀐󰀐λ∗
d,J

󰀐󰀐
2
· sup

i

󰀐󰀐󰀐󰁨F1(q|Xi)− F1(q|Xi)
󰀐󰀐󰀐
2

2

≤J sup
i

|Diρ
′′ (ξi)| ·

󰀐󰀐λ∗
d,J

󰀐󰀐
2
· sup

i
sup
j

󰀏󰀏󰀏 󰁨F1(qj|Xi)− F1(qj|Xi)
󰀏󰀏󰀏
2

=Op

󰀳

󰁃J3/2

󰀣󰀕
log n

nhp
d

󰀖1/2

+ h2
d

󰀤2
󰀴

󰁄 = Op

󰀃
J3/2n−(1/2+s)

󰀄
, (A.10)

where λ∗
d,J = (λ∗

d,1, · · · ,λ∗
d,J)

T , the third equality holds by the result in Proposition 1, the

boundedness of ρ′′(·) in Assumption 8, and the restriction about λ∗
d in Assumption 10, and

the last equality holds since
󰀓

logn
nhp

d

󰀔1/2

+ h2
d = o

󰀃
n−(1/4+s/2)

󰀄
under Assumption 7.
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Similarly, for the last term I4, we have

󰀂I4󰀂2 =

󰀐󰀐󰀐󰀐󰀐
1

n

󰁛

i

1(Di = d)ρ′′ (ξi)
󰁫
󰁨Ud (Xi)−Ud (Xi)

󰁬T
λ∗

dUd (Xi)

󰀐󰀐󰀐󰀐󰀐
2

=

󰀐󰀐󰀐󰀐󰀐
1

n

󰁛

i

1(Di = d)ρ′′ (ξi)
󰁫
󰁨F1(q|Xi)− F1(q|Xi)

󰁬T
λ∗

d,JUd (Xi)

󰀐󰀐󰀐󰀐󰀐
2

≤ sup
i

|1(Di = d)ρ′′ (ξi)| ·
󰀐󰀐λ∗

d,J

󰀐󰀐
2
· sup

i

󰀐󰀐󰀐󰁨F1(q|Xi)− F1(q|Xi)
󰀐󰀐󰀐 · sup

x∈X
󰀂Ud (x)󰀂2

≤
√
J sup

i
|1(Di = d)ρ′′ (ξi)| ·

󰀐󰀐λ∗
d,J

󰀐󰀐
2
· sup

i
sup
j

󰀏󰀏󰀏 󰁨F1(qj|Xi)− F1(qj|Xi)
󰀏󰀏󰀏 · sup

x∈X
󰀂Ud (x)󰀂2

=Op

󰀣
JM1/2

󰀣󰀕
log n

nhp
d

󰀖1/2

+ h2
d

󰀤󰀤
= Op

󰀓√
MJn−(1/4+s/2)

󰀔
. (A.11)

Combining (A.3) and (A.8) - (A.11) leads to

󰀐󰀐󰀐 󰁨G′
n,d(λ

∗
d)
󰀐󰀐󰀐
2
≤ 󰀂I1󰀂2 + 󰀂I2󰀂2 + 󰀂I3󰀂2 + 󰀂I4󰀂2 = Op

󰀓√
MJn−(1/4+s/2)

󰀔
.

This completes the proof of Lemma 3.

Lemma 4. Let 󰁥λd be unique maximizer of 󰁨Gn,d(λd). Under Assumptions 1-10, we have

󰀐󰀐󰀐󰁥λd − λ∗
d

󰀐󰀐󰀐
2
= Op

󰀓√
MJn−(1/4+s/2)

󰀔
.

Proof of Lemma 4: Recall that

󰁨Gn,d(λd) =
1

n

n󰁛

i=1

1(Di = d)ρ
󰀓
󰁨Ud(Xi)

Tλd

󰀔
− 1

n

n󰁛

i=1

󰁨Ud(Xi)
Tλd,

which is a strictly concave function. To prove
󰀐󰀐󰀐󰁥λd − λ∗

d

󰀐󰀐󰀐
2
= Op

󰀓√
MJn−(1/4+s/2)

󰀔
, it is

sufficient to show that

P{ 󰁨Gn,d(λd)− 󰁨Gn,d(λ
∗
d) < 0, ∀λd ∈ C̄} → 1, as n → ∞, (A.12)

where C̄ =
󰁱
λd ∈ RM : 󰀂λd − λ∗

d󰀂2 = b4

󰀓√
MJn

−(1/4+s/2)
1

󰀔󰁲
for some constant b4 > 0.

It is clear that for any λd ∈ C̄, there exists a λ̄d between λd and λ∗
d such that

󰁨Gn,d(λd)− 󰁨Gn,d (λ
∗
d) = (λd − λ∗

d)
T 󰁨G′

n,d (λ
∗
d) +

1

2
(λd − λ∗

d)
T 󰁨G′′

n,d(λ̄d) (λd − λ∗
d) . (A.13)
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For the first term, by Cauchy-Schwarz inequality and the results in Lemma 3, we have

(λd − λ∗
d)

T 󰁨G′
n,d (λ

∗
d) ≤ 󰀂λd − λ∗

d󰀂2
󰀐󰀐󰀐 󰁨G′

n,d (λ
∗
d)
󰀐󰀐󰀐
2
≤ b5 󰀂λd − λ∗

d󰀂2
√
MJn

−(1/4+s/2)
1 (A.14)

for some constant b5 > 0. For the second term, by the results in Lemmas 2 and 3, we have

(λd − λ∗
d)

T 󰁨G′′
n,d(λ̄d) (λd − λ∗

d) =
1

n

n󰁛

i=1

1(Di = d)ρ′′
󰀓
󰁨Ud(Xi)

T λ̄d

󰀔
(λd − λ∗

d)
T 󰁨Ud(Xi)󰁨Ud(Xi)

T (λd − λ∗
d)

≤− b6 (λd − λ∗
d)

T

󰀥
1

n

n󰁛

i=1

1(Di = d)󰁨Ud(Xi)󰁨Ud(Xi)
T

󰀦
(λd − λ∗

d)

≤− b6 󰀂λd − λ∗
d󰀂

2
2 νmin

󰀥
1

n

n󰁛

i=1

1(Di = d)󰁨Ud(Xi)󰁨Ud(Xi)
T

󰀦
≤ −b1b6 󰀂λd − λ∗

d󰀂
2
2 , (A.15)

where −b6 = supi ρ
′′
󰀓
󰁨Ud(Xi)

T λ̄d

󰀔
, 0 < b6 < ∞ since the negativity and boundedness of

ρ′′(·) in Assumption 8.

Combining (A.13), (A.14) and (A.15) yields

󰁨Gn,d(λd)− 󰁨Gn,d (λ
∗
d) ≤b5 󰀂λd − λ∗

d󰀂2
√
MJn

−(1/4+s/2)
1 − b1b6 󰀂λd − λ∗

d󰀂
2
2

=b4b5

󰀓√
MJn

−(1/4+s/2)
1

󰀔2

− b1b
2
4b6

󰀓√
MJn

−(1/4+s/2)
1

󰀔2

=b4 (b5 − b1b4b6)
󰀓√

MJn
−(1/4+s/2)
1

󰀔2

< 0

for 󰀂λd − λ∗
d󰀂2 = b4

󰀓√
MJn

−(1/4+s/2)
1

󰀔
with large enough constant b4 > 0. Thus, (A.12) is

proved. We complete the proof of Lemma 4.

Lemma 5. Define w∗
d(x) = ρ′

󰀃
Ud(Xi)

Tλ∗
d

󰀄
. Under Assumptions 1-5 and 8-10, we have

sup
x∈X

󰀏󰀏󰀏󰀏
1

π(x)
− w∗

1(x)

󰀏󰀏󰀏󰀏 = Op

󰀃
M1/2−rπ/2

󰀄
and sup

x∈X

󰀏󰀏󰀏󰀏
1

1− π(x)
− w∗

0(x)

󰀏󰀏󰀏󰀏 = Op

󰀃
M1/2−rπ/2

󰀄
.

(A.16)

Proof of Lemma 5: Without loss of generality, we focus on proving supx∈X

󰀏󰀏󰀏 1
π(x)

− w∗
1(x)

󰀏󰀏󰀏 =
Op

󰀃
M1/2−rπ/2

󰀄
. We have

sup
x∈X

󰀏󰀏󰀏󰀏
1

π(x)
− w∗

1(x)

󰀏󰀏󰀏󰀏 = sup
x∈X

󰀏󰀏󰀏󰀏
1

π(x)
− ρ′

󰀃
U1(x)

Tλ∗
1

󰀄󰀏󰀏󰀏󰀏

≤ sup
x∈X

󰀏󰀏󰀏󰀏
1

π(x)
− ρ′

󰀓
U1(x)

Tλ†
1

󰀔󰀏󰀏󰀏󰀏+ sup
x∈X

󰀏󰀏󰀏ρ′
󰀓
U1(x)

Tλ†
1

󰀔
− ρ′

󰀃
U1(x)

Tλ∗
1

󰀄󰀏󰀏󰀏 . (A.17)
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where λ†
1 is an M × 1 vector satisfying the condition given in Assumption 9.

As defined in Assumption 9, m∗
1(x) = −φ′󰀃1/π(x)

󰀄
= (ρ′)−1

󰀃
1/π(x)

󰀄
. Under Assump-

tion 9, the first term in (A.17) satisfies

sup
x∈X

󰀏󰀏󰀏󰀏
1

π(x)
− ρ′

󰀓
U1(x)

Tλ†
1

󰀔󰀏󰀏󰀏󰀏 =sup
x∈X

󰀏󰀏󰀏ρ′ (m∗
1(x))− ρ′

󰀓
U1(x)

Tλ†
1

󰀔󰀏󰀏󰀏

≲ sup
x∈X

󰀏󰀏󰀏m∗
1(x)−U1(x)

Tλ†
1

󰀏󰀏󰀏 ≤ b7M
−rπ (A.18)

for some constant b7 > 0. Here “≲” denotes “less than or equal to” up to a universal

constant.

For the second term in (A.17), we have

sup
x∈X

󰀏󰀏󰀏ρ′
󰀓
U1(x)

Tλ†
1

󰀔
− ρ′

󰀃
U1(x)

Tλ∗
1

󰀄󰀏󰀏󰀏
2
≲ sup

x∈X

󰀏󰀏󰀏U1(x)
Tλ†

1 −U1(x)
Tλ∗

1

󰀏󰀏󰀏

≤ sup
x∈X

󰀂U1(x)󰀂2
󰀐󰀐󰀐λ†

1 − λ∗
1

󰀐󰀐󰀐
2
≤ C3

√
M

󰀐󰀐󰀐λ†
1 − λ∗

1

󰀐󰀐󰀐
2
, (A.19)

according to Assumption 9 (ii). Now we focus on
󰀐󰀐󰀐λ†

1 − λ∗
1

󰀐󰀐󰀐
2
. Recall that λ∗

1 is the unique

maximizer of

G∗
1(λ1) = E

󰀅
Dρ

󰀃
U1(X)Tλ1

󰀄
−U1(X)Tλ1

󰀆
= E

󰀅
π(X)ρ

󰀃
U1(X)Tλ1

󰀄
−U1(X)Tλ1

󰀆
.

Consider a set C† =
󰁱
λ1 ∈ RM :

󰀐󰀐󰀐λ1 − λ†
1

󰀐󰀐󰀐
2
≤ b8M

−rπ/2
󰁲

for some constant b8 > 0. To

show that λ∗
1 ∈ C†, it suffices to show that

P{G∗
1(λ1)−G∗

1(λ
†
1) < 0, ∀λ1 ∈ C̄†} → 1, as n → ∞, (A.20)

where C̄† =
󰁱
λ1 ∈ RM :

󰀐󰀐󰀐λ1 − λ†
1

󰀐󰀐󰀐
2
= b8M

−rπ/2
󰁲
.

To this end, define

G†
1(λ1) = E

󰀵

󰀷 1

ρ′
󰀓
U1(X)Tλ†

1

󰀔ρ
󰀃
U1(X)Tλ1

󰀄
−U1(X)Tλ1

󰀶

󰀸 .

Notice that G†
1(·) is a concave function and

(G†
1)

′(λ†
1) = E

󰀵

󰀷
ρ′
󰀓
U1(X)Tλ†

1

󰀔

ρ′
󰀓
U1(X)Tλ†

1

󰀔U1(X)−U1(X)

󰀶

󰀸 = 0. (A.21)

Thus, λ†
1 is the unique maximizer of G†

1(λ1). Moreover, for any λ1 ∈ C̄†, there exists a λ̌1
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between λ1 and λ†
1 such that

G†
1(λ1)−G†

1(λ
†
1) =(G†

1)
′(λ†

1)
T (λ1 − λ†

1) +
1

2
(λ1 − λ†

1)
T (G†

1)
′′(λ̌1)(λ1 − λ†

1)

=0 +
1

2
E

󰀵

󰀷ρ′′
󰀃
U1(X)T λ̌1

󰀄

ρ′
󰀓
U1(X)Tλ†

1

󰀔(λ1 − λ†
1)

TU1(X)U1(X)T (λ1 − λ†
1)

󰀶

󰀸

≤− b9(λ1 − λ†
1)

TE
󰀅
U1(X)U1(X)T

󰀆
(λ1 − λ†

1)

≤− b9

󰀐󰀐󰀐λ1 − λ†
1

󰀐󰀐󰀐
2

2
νmin

󰀃
E
󰀅
U1(X)U1(X)T

󰀆󰀄

≤− b9C4

󰀐󰀐󰀐λ1 − λ†
1

󰀐󰀐󰀐
2

2
, (A.22)

for some constant b9 > 0. We also have, for any λ1 ∈ C̄†,

󰀏󰀏󰀏G†
1(λ1)−G∗

1(λ1)
󰀏󰀏󰀏 =

󰀏󰀏󰀏󰀏󰀏󰀏
E

󰀵

󰀷

󰀳

󰁃 1

ρ′
󰀓
U1(X)Tλ†

1

󰀔 − π(X)

󰀴

󰁄 ρ
󰀃
U1(X)Tλ1

󰀄
󰀶

󰀸

󰀏󰀏󰀏󰀏󰀏󰀏

=

󰀏󰀏󰀏󰀏󰀏󰀏
E

󰀵

󰀷 π(X)

ρ′
󰀓
U1(X)Tλ†

1

󰀔
󰀕

1

π(X)
− ρ′

󰀓
U1(X)Tλ†

1

󰀔󰀖
ρ
󰀃
U1(X)Tλ1

󰀄
󰀶

󰀸

󰀏󰀏󰀏󰀏󰀏󰀏

≤E

󰀵

󰀷

󰀏󰀏󰀏󰀏󰀏󰀏
π(X)

ρ′
󰀓
U1(X)Tλ†

1

󰀔

󰀏󰀏󰀏󰀏󰀏󰀏

󰀏󰀏󰀏󰀏
1

π(X)
− ρ′

󰀓
U1(X)Tλ†

1

󰀔󰀏󰀏󰀏󰀏
󰀏󰀏ρ

󰀃
U1(X)Tλ1

󰀄󰀏󰀏

󰀶

󰀸

≤ sup
x∈X

󰀏󰀏󰀏󰀏󰀏󰀏
π(x)

ρ′
󰀓
U1(x)Tλ

†
1

󰀔

󰀏󰀏󰀏󰀏󰀏󰀏
· sup
x∈X

󰀏󰀏󰀏󰀏
1

π(x)
− ρ′

󰀓
U1(x)

Tλ†
1

󰀔󰀏󰀏󰀏󰀏 · sup
x∈X

󰀏󰀏ρ
󰀃
U1(x)

Tλ1

󰀄󰀏󰀏

≤b10M
−rπ

for some constant b10 > 0 according to (A.18) and the boundedness of π(·), ρ′(·) and ρ(·).
Hence, for any λ1 ∈ C†,

G∗
1(λ1)−G∗

1(λ
†
1) ≤ G†

1(λ1)−G†
1(λ

†
1) + 2b10M

−rπ . (A.23)

Plugging (A.22) into (A.23), we have

G∗
1(λ1)−G∗

1(λ
†
1) ≤ −b9C4

󰀐󰀐󰀐λ1 − λ†
1

󰀐󰀐󰀐
2

2
+ 2b10M

−rπ = (2b10 − b9C4b
2
8)M

−rπ < 0

for a large enough b8 > 0. Thus, (A.20) is proved, which implies

󰀐󰀐󰀐λ∗
1 − λ†

1

󰀐󰀐󰀐
2
≤ b8M

−rπ/2. (A.24)
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Finally, combining (A.17), (A.18), (A.19) and (A.24) yields that

sup
x∈X

󰀏󰀏󰀏󰀏
1

π(x)
− ρ′

󰀃
U1(x)

Tλ∗
1

󰀄󰀏󰀏󰀏󰀏 ≤ b7M
−rπ + C3b8

√
MM−rπ/2 = Op

󰀃
M1/2−rπ/2

󰀄
.

This completes the proof of Lemma 5. □

Lemma 6. For w∗
d(x) = ρ′

󰀃
Ud(Xi)

Tλ∗
d

󰀄
, one has

󰀐󰀐󰀐󰀐
1

π(x)
− w∗

1(x)

󰀐󰀐󰀐󰀐
P,2

= Op

󰀃
M−rπ/2

󰀄
and

󰀐󰀐󰀐󰀐
1

1− π(x)
− w∗

0(x)

󰀐󰀐󰀐󰀐
P,2

= Op

󰀃
M−rπ/2

󰀄
. (A.25)

under Assumptions 1-5 and 8-10.

Proof of Lemma 6: Without loss of generality, we focus on proving
󰀐󰀐󰀐 1
π(x)

− w∗
1(x)

󰀐󰀐󰀐
P,2

=

Op

󰀃
M−rπ/2

󰀄
. We have

󰀐󰀐󰀐󰀐
1

π(x)
− w∗

1(x)

󰀐󰀐󰀐󰀐
P,2

=
󰀐󰀐ρ′ (m∗

1(x))− ρ′
󰀃
Ud(x)

Tλ∗󰀄󰀐󰀐
P,2

≤
󰀐󰀐ρ′ (m∗

1(x))− ρ′
󰀃
Ud(x)

Tλ†󰀄󰀐󰀐
P,2

+
󰀐󰀐ρ′

󰀃
Ud(x)

Tλ†󰀄− ρ′
󰀃
Ud(x)

Tλ∗󰀄󰀐󰀐
P,2

≲
󰀐󰀐m∗

1(x)−Ud(x)
Tλ†󰀐󰀐

P,2
+
󰀐󰀐Ud(x)

Tλ† −Ud(x)
Tλ∗󰀐󰀐

P,2

≤ sup
x∈X

󰀏󰀏m∗
1(x)−Ud(x)

Tλ†󰀏󰀏+ 󰀂Ud(x)󰀂P,2
󰀐󰀐λ∗ − λ†󰀐󰀐

2

=Op

󰀃
M−rπ

󰀄
+Op

󰀃
M−rπ/2

󰀄
= Op

󰀃
M−rπ/2

󰀄

according to Assumption 9 and (A.24). This completes the proof of Lemma 6.

Proof of Proposition 2: Given the results in Lemmas 5 and 6, we only need to prove

supx∈X | 󰁥wd(x)− w∗
d(x)| = Op

󰀃
MJn−(1/4+s/2)

󰀄
and 󰀂 󰁥wd(x)− w∗

d(x)󰀂P,2 = Op

󰀓√
MJn−(1/4+s/2)

󰀔

for d = 0 and 1.

We first focus on supx∈X | 󰁥wd(x)− w∗
d(x)|. Notice that

sup
x∈X

| 󰁥wd(x)− w∗
d(x)| = sup

x∈X

󰀏󰀏󰀏1(Di = d)
󰁫
ρ′
󰀓
󰁨Ud (x)

T 󰁥λd

󰀔
− ρ′

󰀓
Ud (x)

T λ∗
d

󰀔󰁬󰀏󰀏󰀏

≤ sup
x∈X

󰀏󰀏󰀏ρ′
󰀓
󰁨Ud (x)

T 󰁥λd

󰀔
− ρ′

󰀓
Ud (x)

T λ∗
d

󰀔󰀏󰀏󰀏 ≲ sup
x∈X

󰀏󰀏󰀏 󰁨Ud (x)
T 󰁥λd −Ud (x)

T λ∗
d

󰀏󰀏󰀏
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and

sup
x∈X

󰀏󰀏󰀏 󰁨Ud (x)
T 󰁥λd −Ud (x)

T λ∗
d

󰀏󰀏󰀏

=sup
x∈X

󰀏󰀏󰀏󰀏
󰁫
󰁨Ud (x)−Ud (x) +Ud (x)

󰁬T 󰀓
󰁥λd − λ∗

d + λ∗
d

󰀔
−Ud (x)

T λ∗
d

󰀏󰀏󰀏󰀏

≤ sup
x∈X

󰀏󰀏󰀏󰀏
󰁫
󰁨Ud (x)−Ud (x)

󰁬T 󰀓
󰁥λd − λ∗

d

󰀔󰀏󰀏󰀏󰀏+ sup
x∈X

󰀏󰀏󰀏󰀏
󰁫
󰁨Ud (x)−Ud (x)

󰁬T
λ∗

d

󰀏󰀏󰀏󰀏+ sup
x∈X

󰀏󰀏󰀏Ud (x)
T
󰀓
󰁥λd − λ∗

d

󰀔󰀏󰀏󰀏

≤ sup
x∈X

󰀐󰀐󰀐󰁨F1(q|x)− F1(q|x)
󰀐󰀐󰀐
2

󰀐󰀐󰀐󰁥λd − λ∗
d

󰀐󰀐󰀐
2
+ sup

x∈X

󰀐󰀐󰀐󰁨F1(q|x)− F1(q|x)
󰀐󰀐󰀐
2

󰀐󰀐λ∗
d,J

󰀐󰀐
2

+ sup
x∈X

󰀂Ud (x)󰀂2
󰀐󰀐󰀐󰁥λd − λ∗

d

󰀐󰀐󰀐
2

=Op(J
1/2n−(1/4+s/2)) ·Op

󰀓√
MJn−(1/4+s/2)

󰀔
+Op(Jn

−(1/4+s/2)) +Op

󰀃
MJn−(1/4+s/2)

󰀄

=Op

󰀃
MJn−(1/4+s/2)

󰀄

according to the results in Proposition 1 and Lemma 4. Then, we have

sup
x∈X

| 󰁥wd(x)− w∗
d(x)| = Op

󰀃
MJn−(1/4+s/2)

󰀄
.

Similarly, for 󰀂 󰁥wd(x)− w∗
d(x)󰀂P,2, we have

󰀂 󰁥wd(x)− w∗
d(x)󰀂P,2 ≤

󰀐󰀐󰀐ρ′
󰀓
󰁨Ud (x)

T 󰁥λd

󰀔
− ρ′

󰀓
Ud (x)

T λ∗
d

󰀔󰀐󰀐󰀐
P,2

≲
󰀐󰀐󰀐󰁨Ud (x)

T 󰁥λd −Ud (x)
T λ∗

d

󰀐󰀐󰀐
P,2

=

󰀐󰀐󰀐󰀐
󰁫
󰁨Ud (x)−Ud (x) +Ud (x)

󰁬T 󰀓
󰁥λd − λ∗

d + λ∗
d

󰀔
−Ud (x)

T λ∗
d

󰀐󰀐󰀐󰀐
P,2

≤
󰀐󰀐󰀐󰀐
󰁫
󰁨Ud (x)−Ud (x)

󰁬T 󰀓
󰁥λd − λ∗

d

󰀔󰀐󰀐󰀐󰀐
P,2

+

󰀐󰀐󰀐󰀐
󰁫
󰁨Ud (x)−Ud (x)

󰁬T
λ∗

d

󰀐󰀐󰀐󰀐
P,2

+
󰀐󰀐󰀐Ud (x)

T
󰀓
󰁥λd − λ∗

d

󰀔󰀐󰀐󰀐
P,2

=Op(Jn
−(1/4+s/2)
1 ) ·Op

󰀓√
MJn

−(1/4+s/2)
1

󰀔
+Op(Jn

−(1/4+s/2)) +Op

󰀓√
MJn

−(1/4+s/2)
1

󰀔

=Op

󰀓√
MJn

−(1/4+s/2)
1

󰀔
.

This concludes the proof of Proposition 2.

B Proofs of Theorems 1 and 2

Before presenting proofs of Theorems 1 and 2, we first introduce some notations and

inequalities. Let G = {g : X 󰀁→ R} be a class of measurable real-valued functions defined on

X . An envelop function of a class G is a function G(x) such that |g(x)| ≤ G(x), for every
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x ∈ X and g ∈ G. The bracketing number N[](󰂃,G, 󰀂·󰀂) is the minimum number of 󰂃 brackets

needed to cover G. The bracketing integral is defined as, for any δ > 0,

J[] (δ,G, L2(P )) =

󰁝 δ

0

󰁴
lnN[](󰂃,G, Lr(P )) d󰂃 < ∞. (B.1)

Suppose {Xi}ni=1 are i.i.d following probability P and for any function g ∈ G. Define the

empirical process as

Gn(g) =
1√
n

n󰁛

i=1

g(Xi)− E [g(Xi)] .

Lemma 7. (Maximal Inequality.) For any class G of measurable functions with an

envelope function G, one has

E
󰀗
sup
g∈G

|Gn(g)|
󰀘
≲ J[](󰀂G󰀂P,2 ,G, L2(P )).

where “≲” denotes “less than or equal to” up to a universal constant.

Proof of Lemma 7: The result is given by Corollary 19.35 in van der Vaart (2000).

Proof of Theorem 1: Without loss of generality, we focus on the case d = 1. Recall that

F1(q |Xi) = (F1(q1 |Xi), · · · , F1(qJ |Xi))
T with yl = q1 < q2 < · · · < qJ = yu being equally-

spaced grid points on Y = [yl, yu], cj(y) =
󰁔J

k=1,k ∕=j
y−qk
qj−qk

, and c(y) = (c1(y), · · · , cJ(y))T .
Then, since 1

n

󰁓
i [Di 󰁥w1(Xi)− 1] c(y)T 󰁨F1(q |Xi) = 0 as posited in the constraints of the

optimization problem,
√
n
󰁫
󰁥F1(y)− F1(y)

󰁬
can be written as

√
n
󰁱
󰁥F1(y)− F1(y)

󰁲
=

√
n

󰀫
1

n

󰁛

i

Di 󰁥w1(Xi)1 (Yi ≤ y)− F1(y)

󰀬

=
√
n

󰀫
1

n

󰁛

i

Di

π(Xi)
[1 (Yi ≤ y)− F1 (y |Xi)] +

1

n

󰁛

i

F1 (y |Xi)− F1(y)

+
1

n

󰁛

i

Di

󰀗
󰁥w1(Xi)−

1

π(Xi)

󰀘
[1 (Yi ≤ y)− F1 (y |Xi)]

+
1

n

󰁛

i

[Di 󰁥w1(Xi)− 1] c(y)T
󰁫
F1(q |Xi)− 󰁨F1(q |Xi)

󰁬󰀬

+
1

n

󰁛

i

[Di 󰁥w1(Xi)− 1]
󰀅
F1 (y |Xi)− c(y)TF1(q |Xi)

󰀆

:=S1 +R1 +R2 +R3.
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To prove the theorem, it suffices to show that S1 asymptotically follows a normal distribution,

and R1 +R2 +R3 is op(1).

First, we consider the term R1, which is

R1 =
1√
n

󰁛

i

Di

󰀅
󰁥w1(Xi)− π−1(Xi)

󰀆
[1 (Yi ≤ y)− F1 (y |Xi)]

=
1√
n

󰁛

i

Di

󰁫
ρ′
󰀓
󰁨U1 (Xi)

T 󰁥λ1

󰀔
− ρ′ (m∗

1(Xi))
󰁬
[1 (Yi ≤ y)− F1 (y |Xi)] .

Define

g1(D, Y,X) := D [ρ′ (m1(X))− ρ′ (m∗
1(X))] [1 (Y ≤ y)− F1 (y |X)] ,

where, m1 : X 󰀁→ R is a continuous bounded function. Since E [g1(D, Y,X)] = 0, the empir-

ical process of g1 is

Gn(g1) =
1√
n

n󰁛

i=1

{g1(Di, Yi, Xi)− E [g1(D, Y,X)]}

=
1√
n

n󰁛

i=1

D [ρ′ (m1(X))− ρ′ (m∗
1(X))] [1 (Y ≤ y)− F1 (y |X)] .

Consider a set of functions

G1 =

󰀝
g1 : sup

x∈X
|m1(x)−m∗

1(x)| ≤ η1

󰀞

with η1 = b11

󰀓
MJn

−(1/4+s/2)
1 +M1/2−rπ/2

󰀔
for some constant b11 > 0. Then, by the maximal

inequality in Lemma 7, we have

R1 ≤ sup
g1∈G1

Gn (g1) ≲ E sup
g1∈G1

Gn (g1) ≲ J[]

󰁱
󰀂G1󰀂P,2 ,G1, L2(P )

󰁲
,

where G1 = b12 · η1 ≥ |g1(Di, Yi, Xi)| is an envelop function for some b12 > 0. Conse-

quently, we have 󰀂G1󰀂P,2 = [E (G2
1)]

1/2 ≲ η1. Then, we bound J[]

󰁱
󰀂G1󰀂P,2 ,G1, L2(P )

󰁲
by

N[] (ε,G1, L2(P )).

To bound logN[] (ε,G1, L2(P )) , define a new set of function G ′
1 = {g1 : supx∈X |m1(x)−

m∗
1(x)| ≤ b13} for some constant b13 > 0. Then, it is easily seen that

logN[] (ε,G1, L2(P )) ≲ logN[] (ε, η1G ′
1, L2(P )) ≲ logN[] (ε/η1,G ′

1, L2(P ))

≲ logN[] (ε/η1,M1, L2(P )) ≤ C5(η1/ε)
(1/ν).
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where, η1G ′
1 = {η1g1 : supx∈X |m1(x)−m∗

1(x)| ≤ b13}, M1 is the function class to whichm∗
1(x)

pertains, and the last inequality is due to Assumption 9 (iv). Thus, J[]

󰁱
󰀂G1󰀂P,2 ,G1, L2(P )

󰁲

is bounded as follows,

J[]

󰁱
󰀂G1󰀂P,2 ,G1, L2(P )

󰁲
≲

󰁝 η1

0

󰀅
logN[] {ε,G1, L2(P )}

󰀆1/2
dε ≲

󰁝 η1

0

(η1/ε)
1/(2ν) dε → 0,

where, the last term holds since η1 goes to 0 and 2ν > 1. This complete the proof R1 =

op(1).

Next, we consider the term R2, which is

R2 =
1√
n

n󰁛

i=1

[D1 󰁥w1(Xi)− 1] c(y)T
󰁫
F1(q |Xi)− 󰁨F1(q |Xi)

󰁬

=
1√
n

n󰁛

i=1

󰁫
D1ρ

′
󰀓
󰁨U1 (Xi)

T 󰁥λ1

󰀔
− 1

󰁬 J󰁛

j=1

cj(y)
󰁫
F1(qj |X)− 󰁨F1(qj |X)

󰁬
.

Define

g2(D, Y,X) = [Dρ′(m1(X))− 1]
J󰁛

j=1

cj(y)∆j(X),

where, ∆j(X) = F1(qj |X)− 󰁨F1(qj |X). The empirical process of g2 is

Gn(g2) =
√
n

󰀫
1

n

n󰁛

i=1

g2(Di, Yi, Xi)− E [g2(D, Y,X)]

󰀬
.

Define a class of functions as follows

G2 = {g2 : 󰀂m1 −m∗
1󰀂P,2 ≤ η21, 󰀂∆j󰀂∞ ≤ η22 for all j} ,

where η21 = b14

󰀓√
MJn

−(1/4+s/2)
1 +M−rπ/2

󰀔
and η22 = b15

󰀕󰀓
logn1

n1h
p
1

󰀔1/2

+ h2
1

󰀖
for some con-

stants b14 > 0 and b15 > 0. Then, we have

R2 ≤ sup
g2∈G2

Gn (g2) + n1/2 sup
g2∈G2

E(g2). (B.2)

For the first term supg2∈G2
Gn (g2) on the right side of (B.2), by the maximal inequality in

Lemma 7, we have

sup
g2∈G2

Gn (g2) ≲ E sup
g2∈G2

Gn (g2) ≲ J[]

󰁱
󰀂G2󰀂P,2 ,G2, L2(P )

󰁲
,

where G2 = b16 · Jη22 ≥ |g2(D, Y,X)| is an envelop function for some constant b16 > 0. Con-
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sequently, we have 󰀂G2󰀂P,2 ≲ Jη22. Similar to characterizing R1, J[]

󰁱
󰀂G2󰀂P,2 ,G2, L2(P )

󰁲
is

bounded by N[] (ε,G2, L2(P )).

To bound N[] (ε,G2, L2(P )), for some constant b17 > 0, we define three new classes: G ′
2 =

{g2 : 󰀂m1 −m∗
1󰀂P,2 ≤ b17, 󰀂∆j󰀂P,2 ≤ 1 for all j} , G ′

20 = {m1 ∈ M1 + m∗
1 : 󰀂m1󰀂P,2 ≤ b17},

and G ′
21 =

󰁱
∆j ∈ F1 − 󰁨F1 (qj |X) : 󰀂∆j󰀂P,2 ≤ 1 for all j

󰁲
. Then, we have

logN[] {ε,G2, L2(P )} ≲ logN[] {ε/(Jη22),G ′
2, L2(P )}

≲ logN[] {ε/(Jη22),G ′
20, L2(P )}+ logN[] {ε/(Jη22),G ′

21, L2(P )}

≲ logN[] {ε/(Jη22),M1, L2(P )}+ logN[] {ε/(Jη22),F1, L2(P )}

≤ C5 ((Jη22)/ε)
1/ν + C1 ((Jη22)/ε)

p/r .

Therefore, we have

J[]

󰁱
󰀂g2󰀂P,2 ,G2, L2(P )

󰁲
≲

󰁝 Jη22

0

󰀅
logN[] {ε,G2, L2(P )}

󰀆1/2
dε

≲
󰁝 Jη22

0

(Jη22/ε)
1/(2ν) dε+

󰁝 Jη22

0

(Jη22/ε)
p/(2r) dε.

By 2ν > 1, p/(2r) < 1 and Jη22 → 0, we have J[]

󰁱
󰀂g2󰀂P,2 ,G2, L2(P )

󰁲
= o(1), which implies

sup
g2∈G2

Gn (g2) = op(1). (B.3)

For the second term n1/2 supg2∈G2
E(g2) on the right hand side of (B.2). Let G20 =

{m1 : 󰀂m1 −m∗
1󰀂P,2 ≤ η21} and G21 = {∆ : 󰀂∆󰀂∞ ≤ η22}. Thus, one has

n1/2 sup
g2∈G2

Eg2 = n1/2 sup
m1∈G20,∆j∈G21

E

󰀫
[π(X)ρ′{m1(X)}− 1]

J󰁛

j=1

cj(y)∆j(X)

󰀬

= n1/2 sup
m1∈G20,∆∈G21

E

󰀣󰀗
ρ′{m1(X)}− 1

π(X)

󰀘
π(X)

J󰁛

j=1

cj(y)∆j(X)

󰀤

≲ n1/2J sup
m1∈G20

󰀐󰀐󰀐󰀐ρ
′{m1(X)}− 1

π(X)

󰀐󰀐󰀐󰀐
P,2

sup
∆j∈G21

󰀂∆j(X)󰀂P,2

≲ n1/2Jη21η22 = op(1), (B.4)

where the last equality is due to Assumptions 7 and 9.

Combining (B.2)-(B.4), we can conclude that R2 = op(1).
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Now, for the term R3, we have

R3 =
1√
n

󰁛

i

[Di 󰁥w1(Xi)− 1]
󰀅
F1 (y |Xi)− c(y)TF1(q |Xi)

󰀆

≤
√
n sup

i
|Di 󰁥w1(Xi)− 1| sup

i

󰀏󰀏F1 (y |Xi)− c(y)TF1(q |Xi)
󰀏󰀏

=Op

󰀕√
n

CJ

J(J − 1)J

󰀖
= o(1),

by assuming J = O(log(n)) as in Assumption 9 (i).

Finally, for any y ∈ Y ,

√
n
󰁫
󰁥Fd(y)− F1(y)

󰁬

=
1√
n

󰁛

i

󰀝
1(Di = d) [1 (Yi ≤ y)− F1 (y |Xi)]

π(Xi)d[1− π(Xi)](1−d)
+ F1 (y |Xi)− F1(y)

󰀞
+ op(1)

=
1√
n

󰁛

i

ψF
d (y,Zi) + op(1),

where Zi = (Yi, Di, Xi). It can be shown that the function class I = {y ∈ Y : ψF
d (y,Zi)}

belongs to Donsker class by combining the results in Examples 19.6, 19.9 and 19.20 in van der

Vaart (2000). Note that the Cartesian product of two Donsker classes is still a Donsker class

(van der Vaart, 2000). Then, the result in Theorem 1 follows directly from the functional

central limit theorem.

Proof of Theorem 2: Denote 󰁥Fb(y) =
√
n
󰁫
󰁥Fb(y)− 󰁥F(y)

󰁬
. Since the function class

I = {y ∈ Y : ψF
d (y,Zi)} belongs to Donsker class, then, by Theorem 3.6.1 in van der Vaart

and Wellner (1996), we have

sup
h∈BL1

󰀏󰀏󰀏E
󰀓
h
󰀓
󰁥Fb
󰀔
|Zi

󰀔
− E(h(F))

󰀏󰀏󰀏 p−→ 0, (B.5)

where BL1 is the set of bounded and Lipschitz functions from ℓ∞(I) to R. It follows from

the results in Section 1.12 in van der Vaart and Wellner (1996) that (B.5) implies weak

convergence 󰁥Fb(·) p⇒ F(·) conditional on the data. Thus, Theorem 2 is proved.
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C Proofs of Propositions 3 - 5

Proof of Proposition 3: By the Bahadur representation, we have

√
n
󰁫
󰁥Qd(τ)−Qd(τ)

󰁬
=

1√
n

n󰁛

i=1

ψF
d (Qd(τ),Zi)

fd(Qd(τ))
+ op(1),

and then,
√
n
󰁫
󰁥∆(τ)−∆(τ)

󰁬
can be represented as:

√
n
󰁫
󰁥∆(τ)−∆(τ)

󰁬
=

1√
n

n󰁛

i=1

ψF
1 (Q1(τ),Zi)

f1(Q1(τ))
− ψF

0 (Q0(τ),Zi)

f0(Q0(τ))
+ op(1).

It can be shown easily that the function class
󰁱
τ ∈ [0, 1] :

ψF
1 (Q1(τ),Zi)

f1(Q1(τ))
− ψF

0 (Q0(τ),Zi)

f0(Q0(τ))

󰁲
belongs

to Donsker class by the results in Examples 19.6, 19.9 and 19.20 in van der Vaart (2000).

Hence, Proposition 3 is proved by the functional central limit theorem.

Proof of Proposition 4: Denote 󰁥Qb(·) =
√
n
󰁫
󰁥∆b(·)− 󰁥∆(·)

󰁬
. Since the function class

Q =
󰁱
τ ∈ [a, b] :

ψF
1 (Q1(τ),Zi)

f1(Q1(τ))
− ψF

0 (Q0(τ),Zi)

f0(Q0(τ))

󰁲
belongs to Donsker class, then, by Theorem

3.6.1 in van der Vaart and Wellner (1996), we have

sup
h∈BL1

󰀏󰀏󰀏E
󰀓
h
󰀓
󰁥Qb

󰀔
|Zi

󰀔
− E(h(Q))

󰀏󰀏󰀏 p−→ 0, (C.1)

where BL1 is the set of bounded and Lipschitz functions from ℓ∞(Q) to R. An application

of the results in Section 1.12 in van der Vaart and Wellner (1996) gives that (C.1) implies

weak convergence 󰁥Qb(·) p⇒ Q(·) conditional on the data. Thus, Proposition 4 is proved.

Proof of Proposition 5: From the proof of Theorem 1, we have

√
n
󰁱󰁫

󰁥F1(y)− F1(y)
󰁬
−

󰁫
󰁥F0(y)− F0(y)

󰁬󰁲
=

1√
n

󰁛

i

󰀅
ψF
1 (y,Zi)− ψF

0 (y,Zi)
󰀆
+ op(1),

where the function class
󰀋
y ∈ Y : ψF

1 (y,Zi)− ψF
0 (y,Zi)

󰀌
belongs to Donsker class. Thus, by

the functional central limit theorem, under Assumptions 1-10, uniformly for y ∈ Y , we have

√
n
󰁱󰁫

󰁥F1(y)− F1(y)
󰁬
−

󰁫
󰁥F0(y)− F0(y)

󰁬󰁲
⇒ KS(y), (C.2)

where KS(y) is a Gaussian process with mean zero and covariance function ΨKS (y, y′) =
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E
󰀅
ψKS (y)ψKS (y′)

󰀆
with ψKS(y) =

󰀅
ψF
1 (y,Zi)− ψF

0 (y,Zi)
󰀆
and ψF

d is given in (12). Define

󰁥T =
√
n sup

y

󰁱󰁫
󰁥F1(y)− F1(y)

󰁬
−

󰁫
󰁥F0(y)− F0(y)

󰁬󰁲
.

Then, it follows from the continuous mapping theory that,

󰁥T d→ sup
y

KS(y).

Next, let 󰁥F b
1 and 󰁥F b

0 be the Bootstrap estimates of the potential outcomes’ distributions

based on the Bootstrap scheme in Section 2.4. Denote

󰁦KS
b
(y) =

√
n
󰁱󰁫

󰁥F b
1 (y)− 󰁥F1(y)

󰁬
−

󰁫
󰁥F b
0 (y)− 󰁥F0(y)

󰁬󰁲
.

Similar to the discussion in the proof of Theorem 2, we can obtain 󰁦KS
b
(·) ⇒ KS(·) conditional

on the sample, in probability. Then, the continuous mapping theory implies that,

sup
y

󰁦KS
b
(y) ⇒ sup

y
KS(y), (C.3)

conditional on the sample in probability.

Recall that

󰁦KS =
√
n sup

y∈Y

󰁫
󰁥F1(y)− 󰁥F0(y)

󰁬
.

Then, under H0 : F1(y) ≤ F0(y) for all y ∈ Y , it is clear that 󰁦KS ≤ 󰁥T . Using the same argu-

ments as in the proof of Proposition 1 (A) in Barrett and Donald (2003), the distribution of

supy KS(y) is absolutely continuous on (0,∞), and c(α) defined by P
󰀃
supy KS(y) > c(α)

󰀄
=

α is finite for α < 1/2. Note that the event that 󰁥p < α is equivalent to the event 󰁦KS > 󰁥c(α),
where

󰁥c(α) = inf

󰀫
t :

1

B

B󰁛

b=1

󰀓
󰁦KS

b
> t

󰀔
> α

󰀬
.

The result in (C.3) implies 󰁥c(α) p→ c(α). Then, under H0,

lim
n→∞

P (󰁥p < α) = lim
n→∞

P
󰀓
󰁦KS > 󰁥c(α)

󰀔

≤ lim
n→∞

P
󰀓
󰁥T > 󰁥c(α)

󰀔
= lim

n→∞
P
󰀓
󰁥T > c(α)

󰀔
+ lim

n→∞

󰁫
P
󰀓
󰁥T > 󰁥c(α)

󰀔
− P

󰀓
󰁥T > c(α)

󰀔󰁬

= P
󰀕
sup
y

KS(y) > c(α)

󰀖
= α,
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where the second inequality holds since 󰁦KS ≤ 󰁥T under H0 as discussed above, and the last

line follows from 󰁥T d→ supy KS(y) and 󰁥c(α) p→ c(α). This proves part(i) in Proposition 5.

For part(ii), we note that under H1, there exist some y′ ∈ Y such that F1 (y
′)− F0 (y

′) =

ζ > 0. The results in (C.2) imply that 󰁥F1 (y
′)− 󰁥F0 (y

′)
p→ ζ. Then,

󰁦KS ≥
√
n
󰀓
󰁥F1 (y

′)− 󰁥F0 (y
′)
󰀔

p→ ∞.

Since 󰁥c(α) is bounded in probability, we have

lim
n→∞

P (󰁥p > α) = P
󰀓
󰁦KS > 󰁥c(α)

󰀔
= 1.

This completes the proof of part(ii).
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