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Abstract

This paper develops a Stein-like combined estimator for large heterogeneous panel data models

under common structural breaks. The model allows for cross-sectional dependence through a

general multifactor error structure. By utilizing the common correlated effects (CCE) estimation

technique, we propose a Stein-like combined estimator of the CCE full-sample estimator (i.e.,

estimation using both the pre-break and post-break observations) and the CCE post-break

estimator (i.e., estimation using only the post-break sample observations). The proposed

Stein-like combined estimator benefits from exploiting the pre-break sample observations. We

derive the optimal combination weight by minimizing the asymptotic risk. We show the

superiority of the CCE Stein-like combined estimator over the CCE post-break estimator in

terms of the asymptotic risk. Further, we establish the asymptotic properties of the CCE mean

group Stein-like combined estimator. The finite sample performance of our proposed estimator

is investigated using Monte Carlo experiments and an empirical application of predicting the

output growth of industrialized countries.
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1 Introduction

Panel data sets have been increasingly used in economics and statistics, as they provide a flexible

way to model variations over both cross-section units and time. Considering structural breaks in

panel data is of great importance in empirical economics questions. This is because a structural

break is considered as an exogenous shock (such as financial crises or technological progress) which

may influence the relationship among economic variables. It is likely that this shock to have

impacts on economic variables simultaneously. Recently there has been a growing literature on

the detection of changes and common structural breaks, and its associated asymptotic properties

in panel data models. The importance of common structural breaks is evident when the global

financial or technological shocks affect all markets or firms at the same time.

Estimation of multiple break points in the linear regression model is analyzed in Bai and Perron

(1998, 2003) in which they also propose tests for detecting the number of breaks. Bai (2010) studies

the asymptotic properties of the break point estimator for the cross sectionally independence panel

data model but allowing serially correlation within each individual unit. For break points detection

in panel data models, see Kao et al. (2012), Kim (2011, 2014), Qian and Su (2016), Li et al. (2016),

Baltagi et al. (2016, 2019), Baltagi et al. (2017), Perron et al. (2020), Okui and Wang (2021),

and Lumsdaine et al. (2023), among others. While the issues related to the detection of break

points have drawn a lot of attention in both econometrics and statistics, relatively small attention

has been paid to improving estimation of unknown slope coefficients under structural breaks. It

is known that model averaging and combined estimation techniques can improve estimations and

consequently forecasts under model uncertainty. Since the structural break models can be viewed as

the model uncertainty, one can benefit from combined estimation techniques, see for example Stock

and Watson (2004), Hansen (2009), Lee et al. (2022, 2022a), and Parsaeian (2023) who considers

a weighted average estimator in a seemingly unrelated regression model in which the cross-section

dimension is small while the time series dimension is large.

Pesaran (2006) develops a common correlated effects (CCE) estimator that filters out the

unobserved common factors by means of the cross-sectional averages of the dependent variable

and the individual-specific regressors as the cross-section dimension tends to infinity. In this paper,

we develop a Stein-like combined estimator for a large heterogeneous panel data model under
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structural breaks with a general multifactor error structure which is due to unobservable common

factors. The break point is common for all individual units. By utilizing the CCE estimation

method, we introduce a CCE Stein-like combined estimator which can improve estimation of the

slope coefficients in the sense of asymptotic risk. Our proposed estimator is a combination of

two estimators: the CCE full sample estimator and the CCE post-break estimator. The CCE

full-sample estimator ignores the break point and uses the full-sample of observations to estimate

the slope coefficients. Thus, it is the most efficient estimator while it is biased. The CCE post-break

estimator is the consistent estimator but less efficient since it only uses the observations after the

break point. Therefore, combining these two estimators balances the trade-off between the bias

and variance efficiency. The combination weight is inversely related to a weighted quadratic loss

function, and takes the form of the James-Stein weight, cf. James and Stein (1961).1 We establish

the asymptotic risk of the proposed Stein-like combined estimator, and show that its asymptotic

risk is less than that of the CCE post-break estimator, which is the common estimation method

of the slope coefficients under structural breaks. Furthermore, we develop the CCE mean group

(referred to as CCEMG) Stein-like combined estimator, which is a simple average of the individual

CCE estimators. We obtain the asymptotic distribution, and the asymptotic risk of the CCEMG

Stein-like combined estimator, and show that it has a lower asymptotic risk than that of the

CCEMG post-break estimator.

It is a well-established idea in the panel data models to use the averaging estimates of the

individual cross-section units to estimate the common mean, see for example chapter 6 of Hsiao

and Pesaran (2008), and chapter 28 of Pesaran (2015). Since the CCEMG estimators estimate

the common mean in the panel, it is fruitful to compare these estimators. Specifically when the

number of individual units (N) in panel is large, it is hard and not quite informative to compare

the individual CCE estimators. We therefore undertake Monte Carlo simulation studies to evaluate

the finite sample forecasting performance of the proposed CCEMG Stein-like combined estimator,

the CCEMG post-break estimator, and the CCEMG full-sample estimator. We further compare

the performance of the CCEMG estimators in an empirical study of forecasting the output growth

rate of industrialized countries.

1See also Hansen(2016, 2017) and Mehrabani and Ullah (2020) for the use of the Stein-like estimator in different
contexts.
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The rest of the paper is organized as follows. Section 2 introduces a heterogenous panel

data model which allows for structural changes and multifactor error structure, and develops

the CCE Stein-like combined estimator. For simplicity, we discuss the model under a single

break, which simplifies the idea. Although, the generalization of the method to multiple break

points is straightforward. Section 3 establishes the asymptotic distribution and asymptotic risk

of the proposed CCE Stein-like combined estimator. Section 4 develops the asymptotic risk of

the CCEMG Stein-like combined estimator. Section 5 reports Monte Carlo simulation. Section 6

presents empirical analysis. Section 7 concludes. All the proofs are given in the Appendix.

Notation: For an m × n real matrix A, we denote its transpose as A′. When m = n, λmax(A)

denotes the maximum eigenvalues of A. Let tr(A) be the trace of a square matrix A. Im and

0m×1 denote m ×m identity matrix and m × 1 vector of zeros. The operators
d−→, and

p−→ denote

convergence in distribution, and probability, respectively. an = O(bn) states that the deterministic

sequence an is at most of order bn, xn = Op(yn) states that the vector of random variables, xn, is

at most of order yn in probability. Joint convergence of N and T will be denoted by (N,T ) → ∞.

Restrictions on the relative rates of convergence of N and T will be specified separately.

2 The model

Consider the following heterogeneous panel data model with a multifactor error structure, and a

common structural break at time T1 as

yit = x′itβi(T1) + eit, (2.1)

eit = γ′ift + ϵit, (2.2)

where i = 1, . . . , N, t = 1, . . . , T , xit is a k × 1 vector of regressors, eit is the error terms which are

cross-sectionally correlated and modelled by a multifactor structure in (2.2), ft is an m× 1 vector

of unobserved factors, γi is the corresponding loading vector, and ϵit are the idiosyncratic errors

independent of xit. The unobserved factors ft could be correlated with xit as

xit = Γ′
ift + vit, (2.3)
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where Γi is an m × k factor loading matrix, and vit is a k × 1 vector of zero mean disturbances

assumed to follow a general covariance stationary process. The vector of coefficients, βi(T1), are

subject to the structural break across individuals at time T1 such that

βi(T1) =


βi(1) for t = 1, . . . , T1,

βi(2) for t = T1 + 1, . . . , T.

(2.4)

Let Yi =
(
Y ′
i(1), Y

′
i(2)

)′
be a vector of T × 1 dependent variable with Yi(1) =

(
yi1 , . . . , yiT1

)′
and Yi(2) =

(
yiT1+1 , . . . , yiT

)′
, Xi =

(
X ′

i(1), X
′
i(2)

)′
be a T × k matrix of regressors with Xi(1) =(

xi1 , . . . , xiT1

)′
and Xi(2) =

(
xiT1+1 , . . . , xiT

)′
, and ei =

(
e′i(1), e

′
i(2)

)′
be a T ×1 vector of error terms

with ei(1) =
(
ei1, . . . , eiT1

)′
and ei(2) =

(
eiT1+1, . . . , eiT

)′
denote the stacked data and errors for

individuals, i = 1, . . . , N , over the time period observed. Let b1 ≡ T1/T ∈ (0, 1). Thus, the model

in (2.1) can be written as
Yi(1) = Xi(1)βi(1) + ei(1),

Yi(2) = Xi(2)βi(2) + ei(2).

(2.5)

Remark 1: We note that one can also allow a common structural break in the error factor loadings

at the same or different break point, T1. As shown in Section 3, the CCE method filters out the

unobserved common factors by means of the cross-sectional averages of the dependent variable and

the individual-specific regressors. Thus, a common break in loadings does not affect the consistency

of the break point estimator and the slope parameters estimator asymptotically, see Baltagi et al.

(2019).

Remark 2: We note that the method of break point estimation is based on the least-squares

method. That is, for the given break point T1, the associated least-squares estimates of the slope

coefficients are obtained by minimizing the sum of squared residuals.By substituting these estimated

slope coefficients in the objective function, the estimated break point is obtained. Theorems 1-2

in Baltagi et al. (2016) show that, in large panels, (N,T ) → ∞, the break point T1 can be

consistently estimated, i.e., T̂1 − T1 = op(1), which implies that compared to a time series setting,
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the cross-sectional observations improve the accuracy of the estimated break point.2

2.1 CCE Stein-like combined estimator

We propose the CCE Stein-like combined estimator, which is a combination of the CCE full-sample

estimator and the CCE post-break estimator, under common correlated effect models.

Since the ultimate interest is on forecasting, the parameters of interest are βi(2). We propose

the CCE Stein-like combined estimator for βi(2) as

β̃i = αNT β̃i,Full + (1− αNT ) β̃i(2), (2.6)

where β̃i is the CCE Stein-like combined estimator, β̃i,Full is the CCE full-sample estimator which

uses all observations in the full sample and therefore ignores the break across individuals, and β̃i(2)

is the CCE post-break estimator which uses the observations in the post-break sample, t > T1, for

each individual. The combination weight, αNT , depends on the sample. For notational simplicity,

we use α ≡ αNT . Specifically, the combination weight depends on a weighted squared loss function,

and is defined as

α =


τ
DT

if DT ≥ τ

1 if DT < τ,

(2.7)

where τ is a positive parameter that controls the degree of shrinkage, and DT is the weighted

quadratic loss function which measure the distance between the CCE full-sample and the CCE

post-break estimators and is equal to

DT = T
(
β̃i(2) − β̃i,Full

)′
W
(
β̃i(2) − β̃i,Full

)
, (2.8)

in which W is a positive definite weight matrix. For example, when W =
(
Ṽi(2) − Ṽi,Full

)−1
, where

Ṽi,Full and Ṽi(2) are the consistent estimators of the asymptotic variances of the CCE full-sample

and the CCE post-break estimators, then DT becomes the Hausman statistics. This is a suitable

choice for W since the Hausman statistics is the ratio of the bias over variance efficiency. Thus,

using this weight matrix in the combination weight helps to give suitable weight to each of the

2In a time series model, only the estimated break fraction, b̂1, can be consistently estimated and not the estimated
break point. In other words, in time series models T̂1 − T1 = Op(1) for large T , see Bai and Perron (1998).
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CCE full-sample estimator and the CCE post break estimator. Alternatively, when W = Ik, then

DT is unweighted quadratic loss, which is a suitable choice for W when the slope parameters are

of equal importance.

We note that the combination weight, α, is inversely proportional to the weighted quadratic loss

function, and the degree of shrinkage depends on the ratio of τ/DT . Large values of DT (or when

DT > τ) indicate large break sizes. In this case, the combined estimator assigns a large weight

to the CCE post-break estimator and a small weight to the CCE full-sample estimator which is

largely biased under large break sizes. However, small values of DT indicate small break sizes. In

this case, the combined estimator assigns a large weight to the CCE full-sample estimator to gain

from its efficiency, and a small weight to the CCE post-break estimator. Therefore, the proposed

CCE Stein-like combined estimator balances the trade-off between the bias and variance efficiency,

and assigns appropriate weights to each of the CCE full-sample and the CCE post-break estimators

based on the break sizes.

3 Common correlated effects model

In this section, we derive the asymptotic distributions of the full-sample, the post-break and the

Stein-like combined estimators, for each i = {1, . . . , N}, by considering the common correlated

effects ft in the errors and regressors, as defined in (2.2) and (2.3). We call them the CCE full-sample

estimator, the CCE post-break estimator, and the CCE Stein-like combined estimator, respectively.

The asymptotic distribution theory is developed under a local asymptotic framework under which

the CCE Stein-like combined estimator has a nondegenerate asymptotic distribution. Further, we

derive the asymptotic risk for the CCE Stein-like combined estimator.

Assumption 1: The break size in the coefficients is local to zero, i.e., for i = 1, . . . , N ,

βi(2) − βi(1) =
δi√
T
, (3.1)

where δi ∈ R. Assumption 1 indicates that for any fixed δi, the break size shrinks as the sample

size T increases. We note that the break size in the slope coefficients (δi) can be different across

individuals.
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Assumption 2: The disturbances ϵit, for i = 1, ..., N , are cross-sectionally independent, with a

well-defined variance, V ar(ϵit) = σ2i < ∞. Besides, for each series i, ϵit is serially uncorrelated,

and independent of xit for all i and t.

Assumption 3: Common factors ft are covariance stationary with absolute summable

autocovariances, distributed independently of errors ϵis and vis for all i, s, t.

Assumption 4: ϵis and vjt are independent for all i, j, s, t, and V ar(vit) = Σi,v <∞.

Assumption 5: Factor loadings γi and Γi are i.i.d. across i, and independent of ϵjt, vjt and ft

for all i, j, t. Also, assume that γi = γ + ϱi, ϱi ∼ i.i.d. (0,Ωϱ), and Γi = Γ + ξi, ξi ∼ i.i.d. (0,Ωξ),

where the means, γ and Γ, are nonzero and the variances, Ωϱ and Ωξ, are well-defined.

Assumptions 3-5, are the same as Assumptions 8-10 of Baltagi et al. (2016), or similar to

Assumptions 1-3 of Pesaran (2006).

Because of the unobserved common factor effect ft in the error terms and its correlation with

xit , the usual ordinary least squares (OLS) estimation method is inconsistent. Pesaran (2006)

proposes to use the cross-sectional averages of yit and xit as proxies for the unobserved ft. We

define the (k + 1)× 1 vector of wit as

wit =

yit
xit

 = C ′
i(T1)ft + uit(T1), (3.2)

where Ci(T1)︸ ︷︷ ︸
m×(k+1)

=
(
γi,Γi

) 1 01×k

βi(T1) Ik

 =


Ci(1) =

(
γi + Γiβi(1),Γi

)
, for t = 1, . . . , T1,

Ci(2) =
(
γi + Γiβi(2),Γi

)
, for t = T1 + 1, . . . , T,

and uit(T1)︸ ︷︷ ︸
(k+1)×1

=

ϵit + v′itβi(T1)

vit

.

Let w̄t =
∑N

i=1 θiwit be the cross-sectional averages of wit using weights θi, for i = 1, . . . , N ,

where the weights satisfy θi = O( 1
N ),

∑N
i=1 θi = 1 and

∑N
i=1 |θi| <∞. Therefore,

w̄t = C̄ ′(T1)ft + ūt(T1), (3.3)
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where C̄(T1)︸ ︷︷ ︸
m×(k+1)

=
∑N

i=1 θiCi(T1) =


C̄(1) =

∑N
i=1 θiCi(1) for t = 1, . . . , T1,

C̄(2) =
∑N

i=1 θiCi(2) for t = T1 + 1, . . . , T,

and ūt(T1)︸ ︷︷ ︸
(k+1)×1

=
∑N

i=1 θiuit(T1) =



ϵ̄t +
∑N

i=1 θiv
′
itβi(1)

v̄t

 , for t = 1, . . . , T1,

ϵ̄t +
∑N

i=1 θiv
′
itβi(2)

v̄t

 , for t = T1 + 1, . . . , T.

Assumption 6: Rank(C̄(1)) = Rank(C̄(2)) = m ≤ k + 1.

Assumption 6 indicates that the number of common factors cannot be larger than the number

of observable used in estimation. Under Assumption 6, C̄(T1) is of full rank. Thus, ft can be

written as

ft =
(
C̄(T1)C̄(T1)

′)−1
C̄(T1)

(
w̄t − ūt(T1)

)
. (3.4)

As shown in Lemma 1 in Pesaran (2006), as N → ∞, the cross-sectional averages of the errors, ϵ̄t

and v̄t, disappear in both regimes. Therefore,

ft −
(
C̄(T1)C̄(T1)

′)−1
C̄(T1)w̄t

p−→ 0. (3.5)

This suggests using w̄t as observable proxies for ft. We note that the model, presented in (2.1)-(2.2),

for each i = {1, . . . , N}, is given by


Yi(1) = Xi(1)βi(1) + F(1)γi + ϵi(1)

Yi(2) = Xi(2)βi(2) + F(2)γi + ϵi(2),

(3.6)

where F(1) =
(
f1, . . . , fT1

)′
is the T1 × m matrix of the unobserved factors in the first regime,

and F(2) =
(
fT1+1, . . . , fT

)′
is the (T − T1) × m matrix of the unobserved factors in the second

regime. Let W̄(1) =
(
w̄1, . . . , w̄T1

)′
be a matrix of T1 × (k + 1), and W̄(2) =

(
w̄T1+1, . . . , w̄T

)′
be a

matrix of (T −T1)× (k+1). Thus, their corresponding orthogonal projection matrices is defined as
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Mw(1)
= IT1 −W̄(1)

(
W̄ ′

(1)W̄(1)

)−1
W̄ ′

(1) andMw(2)
= IT−T1 −W̄(2)

(
W̄ ′

(2)W̄(2)

)−1
W̄ ′

(2). Pre-multiplying

each regime in (3.6) by Mw(1)
and Mw(2)

, respectively, we get


Ỹi(1) = X̃i(1)βi(1) +Mw(1)

F(1)γi + ϵ̃i(1) = X̃i(1)βi(1) + ϵ̃∗i(1)

Ỹi(2) = X̃i(2)βi(2) +Mw(2)
F(2)γi + ϵ̃i(2) = X̃i(2)βi(2) + ϵ̃∗i(2),

(3.7)

where Ỹi(1) = Mw(1)
Yi(1), X̃i(1) = Mw(1)

Xi(1), and ϵ̃i(1) = Mw(1)
ϵi(1). Similarly, we can define

the transformed data in the second regime as Ỹi(2) = Mw(2)
Yi(2), X̃i(2) = Mw(2)

Xi(2), and ϵ̃i(2) =

Mw(2)
ϵi(2). Also, ϵ̃∗i(1) = Mw(1)

F(1)γi + ϵ̃i(1), and ϵ̃
∗
i(2) = Mw(2)

F(2)γi + ϵ̃i(2). As shown in Appendix

A.1, the order of each elements of Mw(1)
F(1)γi = Op(

1√
N
), and Mw(2)

F(2)γi = Op(
1√
N
). Thus, the

order vanishes as (N,T ) → ∞. This implies that asymptotically ϵ̃∗i(1) and ϵ̃
∗
i(2) can be treated as ϵ̃i(1)

and ϵ̃i(2), respectively. In Theorem 3.1, we derive the asymptotic distribution and the asymptotic

risk for the proposed CCE Stein-like combined estimator.

Assumption 7: For i = 1, . . . , N , the matrices X̃ ′
iX̃i/T , X̃

′
i(1)X̃i(1)/T1, and X̃

′
i(2)X̃i(2)/(T − T1)

are non-singular and converge in probability to some non-random positive definite matrices.

Theorem 3.1: Under Assumptions 1-7, when
√
T/N → 0 as (N,T ) → ∞, the joint asymptotic

distribution of the CCE full-sample estimator and the CCE post-break estimator, for each i =

{1, . . . , N}, is

√
T

β̃i,Full − βi(2)

β̃i(2) − βi(2)

 d−→ V
1/2
i Zi, (3.8)

where Zi ∼ N
(
ηi, I2k

)
, ηi = V

−1/2
i

b1Σ−1
i Σi(1)δi

0k×1

, and Vi =
Vi,Full Vi,Full

Vi,Full Vi(2)

,
with Vi,Full ≡ plim

T→∞
σ2i
( X̃′

iX̃i

T

)−1
, Vi(2) ≡ plim

T→∞

1
1−b1

σ2i
( X̃′

i(2)
X̃i(2)

T−T1

)−1
, Σ−1

i ≡ plim
T→∞

( X̃′
iX̃i

T

)−1
,

and Σi(1) ≡ plim
T→∞

( X̃i(1)
′X̃i(1)
T1

)
. Besides, the asymptotic distribution of the Hausman statistic is

10



DT = T
(
β̃i(2) − β̃i,Full

)′(
Ṽi(2) − Ṽi,Full

)−1(
β̃i(2) − β̃i,Full

)
d−→ Z ′

iV
1/2
i G

(
Vi(2) − Vi,Full

)−1
G′ V

1/2
i Zi

≡ Z ′
iMiZi,

(3.9)

where G =
(
− Ik Ik

)′
and Mi ≡ V

1/2
i G

(
Vi(2) − Vi,Full

)−1
G′ V

1/2
i is an idempotent matrix with

rank k. Finally, the asymptotic distribution of the CCE Stein-like combined estimator is

√
T
(
β̃i − βi(2)

)
=

√
T
(
β̃i(2) − βi(2)

)
− α

√
T
(
β̃i(2) − β̃i,Full

)
d−→ G′

2 V
1/2
i Zi −

( τ

Z ′
iMiZi

)
1
G′ V

1/2
i Zi,

(3.10)

where G2 =
(
0 Ik

)′
and (a)1 = min[1, a].

Proof: See Appendix A.1.

Theorem 3.1 shows that the joint asymptotic distribution of the CCE full-sample estimator and

the CCE post-break estimator is normally distributed. The Hausman statistic has an asymptotic

non-central chi-square distribution. Furthermore, the asymptotic distribution of the CCE Stein-like

combined estimator is a nonlinear function of normal random vector Zi.

3.1 Asymptotic risk for the CCE estimator

In this section, we derive the asymptotic risk of the proposed estimator by using the results of

Theorem 3.1. When an estimator has an asymptotic distribution,
√
T (β̂ − β)

d−→ ξ, we define

the asymptotic risk of the estimator as ρ(β̂,W) = E(ξ′W ξ), where W is a positive definite

weight matrix, see Lehmann and Casella (1998). Utilizing the asymptotic distribution of the CCE

Stein-like combined estimator in (3.10), we obtain the asymptotic risk for this estimator for any

positive definite choice of weight matrix W. We minimize the asymptotic risk to derive the optimal

combination weight, α. Theorem 3.2 shows the asymptotic risk of the CCE Stein-like combined

estimator when W =
(
Vi(2) − Vi,Full

)−1
, which is the inverse of the difference of the asymptotic

variances of the CCE post-break and the CCE full-sample estimators. This choice of weight greatly

simplifies the calculations. The asymptotic risk of the CCE Stein-like combined estimator for any
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user-specific positive definite choice of W is available in the Appendix A.2.

Theorem 3.2: Under Assumptions 1-7, when
√
T/N → 0 as (N,T ) → ∞, the asymptotic risk of

the CCE Stein-like combined estimator, for each i = {1, . . . , N}, is

ρ
(
β̃i,W

)
= ρ
(
β̃i(2),W

)
− τ(2− τ

k − 2
)
[
e−µi

1F1

(k
2
− 1;

k

2
;µi
)]
, (3.11)

provided k > 2, where 1F1(.; .; .) is the confluent hypergeometric function defined as 1F1(a; b;µi) =∑∞
n=0

(a)n µn
i

(b)n n! , where (a)n = a(a+1) . . . (a+n−1), (a)0 = 1, and µi = η′iMiηi/2 is the non-centrality

parameter. Also, ρ
(
β̃i(2),W

)
= tr(WVi(2)).

Proof: See Appendix A.2. ■

Theorem 3.2 shows that the asymptotic risk of the CCE Stein-like combined estimator is less

than the asymptotic risk of the CCE post-break estimator if k > 2, meaning that as long as the

number of regressors are greater than two, the CCE Stein-like combined estimator outperforms the

CCE post-break estimator in term of the asymptotic risk.

Using the results presented in Theorem 3.2, we derive the optimal value for the shrinkage

parameter, denoted by τ∗, as τ∗ = k − 2, which is positive so long as k > 2. By substituting the

optimal value of the shrinkage parameter into the asymptotic risk formula in (3.11), we obtain the

asymptotic risk of the CCE Stein-like combined estimator. Corollary 3.2.1 summarizes the results.

Corollary 3.2.1: Under Assumptions 1-7, when
√
T/N → 0 as (N,T ) → ∞, if 0 ≤ τ ≤ 2(k−2),

the asymptotic risk for the CCE Stein-like combined estimator, for each i = {1, . . . , N}, is

ρ
(
β̃i,W

)
= ρ
(
β̃i(2),W

)
− (k − 2)

[
e−µi

1F1

(k
2
− 1;

k

2
;µi
)]
. (3.12)

■

Corollary 3.2.1 shows that the asymptotic risk of the CCE Stein-like combined estimator is

strictly less than the asymptotic risk of the CCE post-break estimator, for all parameter values

and each i = {1, . . . , N}, so long as the number of regressors (k) exceeds two. We note that (3.12)

holds for all values of localizing parameter δi, even very large values of break sizes. Thus, the CCE

12



Stein-like combined estimator dominates the CCE post-break estimator.

Remark 3: We note that the extension of the proposed estimator to the multiple break points

is straightforward. Under multiple breaks, the proposed CCE Stein-like combined estimator is the

combination of the CCE full-sample estimator (the efficient estimator) and the CCE post-break

estimator after the most recent break point (the consistent estimator). For a similar discussion in

a time-series model with no common correlated factor structures see Lee et al. (2022).

4 Mean group Stein-like combined estimator

It is known in the panel data model literature to use the averaging estimates of the individual

cross-section units to estimate the common mean. Pesaran (2006) introduces the common correlated

effect mean group estimator (CCEMG), which is a simple average of the individual-specific CCE

estimators. In this section, we develop the mean group estimator based on the individual CCE

Stein-like combined estimators introduced in the previous Section. We define the CCEMG

Stein-like combined estimator as β̃MG = α β̃MG,Full + (1 − α) β̃MG(2), where β̃MG,Full is the

CCEMG full-sample estimator, β̃MG(2) is the CCEMG post-break estimator, and α is similar to

(2.7) except that the weighted squared loss function defined in (2.8) is now DN = N
(
β̃MG(2) −

β̃MG,Full

)′W (
β̃MG(2) − β̃MG,Full

)
. In this section, we first develop the asymptotic distribution of

the CCEMG Stein-like combined estimator, and then we establish its asymptotic risk.

Assumption 8: For i = 1, . . . , N , βi(1) = β(1) + νi,β(1)
with νi,β(1)

∼ i.i.d.(0,Σβ(1)
), and βi(2) =

β(2) + νi,β(2)
with νi,β(2)

∼ i.i.d.(0,Σβ(2)
). Besides, the random deviations νi,β(1)

and νi,β(2)
are

independent of γj ,Γj , ϵjt and vjt for all i, j and t.

Assumption 8 states that βi(1) and βi(2) are independent of Γj . This implies that as N → ∞,

C̄(1) =
∑N

i=1 θiCi(1)
p−→ E(Ci(1)) = (γ+Γβ(1),Γ) and C̄(2) =

∑N
i=1 θiCi(2)

p−→ E(Ci(2)) = (γ+Γβ(2),Γ).

Thus, the rank condition in Assumption 6 requires non-zero means for γ and Γ which is satisfied

based on Assumption 5.

Theorem 4.1: Under Assumptions 1-8, and
√
N/T → c as (N,T ) → ∞ in which c is fixed,

the joint asymptotic distribution of the CCEMG full-sample estimator and the CCEMG post-break

13



estimator is

√
N

β̃MG,Full − β(2)

β̃MG(2) − β(2)

 d−→ η̇ + Ż, (4.1)

where η̇ =

b1c Q−1Q1δ1

0k×1

, Ż ∼ N
(
0, V̇

)
, 1

N

∑N
i=1

( X̃′
iX̃i

T

)−1 p−→ Q−1, 1
N

∑N
i=1

( X̃′
i(1)

X̃i(1)

T1

) p−→ Q1,

and V̇ =

VMG,Full cov

cov VMG(2)

 is the variance-covariance matrices of β̃MG,Full and β̃MG(2) with cov

being their asymptotic covariance matrix.

Besides, the asymptotic distribution of the weighted squared loss function is

DN = N
(
β̃MG(2) − β̃MG,Full

)′W (
β̃MG(2) − β̃MG,Full

)
d−→
(
Ż + η̇

)′
P
(
Ż + η̇

)
,

(4.2)

where P ≡ GWG′. Finally, the asymptotic distribution of the CCEMG Stein-like combined

estimator, denoted by β̃MG, is

√
N
(
β̃MG − β(2)

)
=

√
N
(
β̃MG(2) − β(2)

)
− α

√
N
(
β̃MG(2) − β̃MG,Full

)
d−→ G′

2Ż −
( τ(
Ż + η̇

)′
P
(
Ż + η̇

))
1
G′ (Ż + η̇

)
.

(4.3)

Proof: See Appendix A.3.

Theorem 4.1 shows that the joint asymptotic distribution of the CCEMG full-sample estimator

and the CCEMG post-break estimator is normally distributed. Besides, the asymptotic distribution

of the CCEMG Stein-like combined estimator is a nonlinear function of Ż.

Using the results of Theorem 4.1, we derive the asymptotic risk for the CCEMG Stein-like

combined estimator. The results are summarized in Theorem 4.2 below.

Theorem 4.2: Under Assumptions 1-8, and
√
N/T → c as (N,T ) → ∞ in which c is fixed, for

0 ≤ τ ≤ 2
(
tr(A) − 2λmax(A)

)
, the asymptotic risk of the CCEMG Stein-like combined estimator

14



for any user specific positive definite choice of W is

ρ
(
β̃MG,W

)
≤ ρ
(
β̃MG(2),W

)
− τ
[2(tr(A)− 2λmax(A)

)
− τ

η̇′P η̇ + tr(PV̇ )

]
, (4.4)

where A ≡ WG′
2V̇ G, and λmax(A) denotes the maximum eigenvalues of A. Thus, the asymptotic

risk of the CCEMG Stein-like combined estimator is less than that of the CCEMG post-break

estimator.

Proof: See Appendix A.4. ■

The optimal value of τ , denoted by τ∗MG, can be obtained by minimizing the asymptotic risk

in (4.4). Corollary 4.2.1 shows the optimal value of the shrinkage parameter and its corresponding

asymptotic risk.

Corollary 4.2.1: The optimal value of the shrinkage parameter which minimizes the asymptotic

risk of the CCEMG Stein-like combined estimator is

τ∗MG = tr(A)− 2λmax(A), (4.5)

which is positive if tr(A) > 2λmax(A). Further, the asymptotic risk of the CCEMG Stein-like

combined estimator after substituting τ∗MG is

ρ
(
β̃MG,W

)
≤ ρ
(
β̃MG(2),W

)
−
(
tr(A)− 2λmax(A)

)2
η̇′P η̇ + tr(PV̇ )

. (4.6)

■

Corollary 4.2.1 shows that the asymptotic risk of the CCEMG Stein-like combined estimator is

less than that of the CCEMG post-break estimator.

5 Monte Carlo simulations

This section employs Monte Carlo simulations to examine the performance of the CCEMG Stein-like

combined estimator developed in the previous section. To do this, we consider the following data

15



generating process, which is similar to the one considered in Pesaran (2006) but allows for a

structural break,

yit = αi +
3∑

j=1

xit,jβij(T1) +
4∑

j=1

γijfjt + ϵit, (5.1)

where αi ∼ i.i.d. N(1, 1), γij ∼ i.i.d. N(1, 0.2), and the idiosyncratic errors are generated as

ϵit ∼ i.i.d. N(0, σ2i ) with σ
2
i ∼ i.i.d. U(0.5, 1.5). The break in the slope coefficients is

βij(T1) =


βij(1) for t = 1, . . . , T1,

βij(2) for t = T1 + 1, . . . , T,

(5.2)

where βij(2) = 1 + ηij , and ηij ∼ i.i.d. N(0, 0.04), and the break size in the individual slope

coefficients, δ, is {0.1, 0.3, 0.7, 1}. We consider different break points in the individual slopes as

{0.2T, 0.5T, 0.8T} where T = 100.

The regressor xit,j contain the common correlated effect ft,

xit,j = aij + γ2ijfjt + vit,j , (5.3)

where aij ∼ i.i.d. N(0.5, 0.5), γ2ij ∼ i.i.d. N(0.5, 0.5) and vit,j ∼ i.i.d. N(0, 1 − ρ2vij) with ρvij ∼

i.i.d. U[0.05, 0.95]. The factor fjt is generated by the stationary process

fjt = ρfjfjt−1 + vfjt, j = 1, 2, 3, 4, t = −49, . . . , 0, 1, . . . , T ;

vfjt ∼ i.i.d. N(0, 1− ρ2fj), ρfj = 0.5, and fj,−50 = 0.

We consider different values for individuals, N = {100, 150, 200}. As discussed in Section 3,

the estimated value for the unobserved factors are the cross-sectional averages of the dependent

variable and regressors, i.e, f̂t = w̄t, which by inserting Equation (3.3) f̂t = w̄t = C̄ ′(T1)ft+ ūt(T1).

As n → ∞, ūt(T1)
p−→ 0. This means that f̂t is consistent for the space spanned by ft, which is

sufficient to control their effects. 3

We compare the forecasting performance of the CCEMG Stein-like combined estimator, the

CCEMG post-break estimator and the CCEMG full-sample estimator. Specifically, we report the

3See for example Westerlund (2018), and Karabiyik and Westerlund (2021).
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relative mean squared forecast error (RMSFE) considering the CCEMG post-break estimator as

the benchmark method.

Tables 1–2 report the simulation results. Based on the results, the CCEMG Stein-like combined

estimator outperforms the CCEMG post-break estimator under any break points and break size.

When the break happens toward the end of the sample (i.e., b1 = 0.8), the out-performance

of the CCEMG Stein-like combined estimator is larger since there are fewer observations in the

post-break sample. This is expected because when the break point happens toward the end of

the sample, the gain obtained from using the CCEMG Stein-like combine estimator relative to

the CCEMG post-break estimator increases. This shows that one can have a better estimation

by exploiting the observations in both regimes (full-sample) instead of only using the post-break

sample observations. As the break size in the slope coefficients increases, the performance of the

CCEMG Stein-like combined estimator becomes closer to the CCEMG post-break estimator. The

CCEMG full-sample estimator performs better than the CCEMG post-break estimator only if the

break size in the slope coefficients is small, and in the other cases, it under-performs it. This

is because under a large break size, the CCEMG full-sample estimator has a large bias and its

efficiency can not offset the large bias.

We have also compared the performance of the proposed combined estimator with k = 6

regressors in Table 2. The results show that when the number of regressors increases, there is

a larger reduction in the RMSFE for the CCEMG Stein-like combined estimator. Overall the

simulation results show that the CCEMG Stein-like combined estimator always out-performs or

performs equivalent to the CCEMG post-break estimator. Thus, there is no cost in using the

CCEMG combined estimator instead of the CCEMG post-break estimator.
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Table 1: Simulation results for CCEMG estimator, with T = 100 and k = 3

b1 : 0.2 0.5 0.8

δ RMSFEStein RMSFEFull RMSFEStein RMSFEFull RMSFEStein RMSFEFull

N = 100

0.1 0.9450 0.9579 0.7826 0.7417 0.6419 0.3147

0.3 0.9487 1.4013 0.9481 2.8345 0.9442 2.2970

0.7 0.9917 4.2168 0.9775 14.369 0.9917 12.158

1.0 0.9895 7.8498 0.9842 29.299 0.9953 24.770

N = 150

0.1 0.8595 0.8693 0.8122 0.8480 0.6810 0.3969

0.3 0.9548 1.7928 0.9464 3.8780 0.9414 3.3605

0.7 0.9900 6.7270 0.9756 20.497 0.9735 17.71

1.0 0.9894 13.076 0.9827 42.017 0.9864 35.99

N = 200

0.1 0.9664 1.1066 0.8746 1.0783 0.7200 0.5649

0.3 0.9728 2.2019 0.9671 5.6798 0.9771 4.1756

0.7 0.9967 8.7846 0.9852 29.944 0.9955 22.404

1.0 0.9950 17.192 0.9896 61.104 0.9977 45.715

Note: This table reports the RMSFE where the benchmark model is the CCEMG
post-break estimator. The first column shows different values of N , and the second
column, δ, is the break size in the slope coefficients. In the heading of the table,
b1 = T1/T , RMSFEStein denotes the relative MSFE of the CCEMG Stein-like estimator
over the CCEMG post-break estimator, and RMSFEFull denotes the relative MSFE of
the CCEMG full-samplle estimator over the CCEMG post-break estimator.
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Table 2: Simulation results for CCEMG estimator, with T = 100 and k = 6

b1 : 0.2 0.5 0.8

δ RMSFEStein RMSFEFull RMSFEStein RMSFEFull RMSFEStein RMSFEFull

N = 100

0.1 0.8471 0.8476 0.6056 0.6171 0.3151 0.1301

0.3 0.9427 1.2536 0.9379 2.1680 0.6025 0.6994

0.7 0.9839 3.4538 0.9817 9.9828 0.8911 3.5679

1.0 0.9956 6.2303 0.9887 19.949 0.9429 7.2355

N = 150

0.1 0.8732 0.8737 0.6906 0.7327 0.3363 0.1695

0.3 0.9881 1.5031 0.9873 2.9272 0.6719 0.9848

0.7 0.9929 4.5610 0.9989 13.782 0.9335 5.0456

1.0 0.9924 8.3743 1.0000 27.556 0.9690 10.223

N = 200

0.1 0.9937 0.9966 0.8457 0.9630 0.3688 0.2436

0.3 0.9851 1.9375 0.9632 3.9758 0.7764 1.3880

0.7 0.9948 5.9770 0.9950 18.087 0.9685 6.8912

1.0 0.9960 10.835 0.9956 35.727 0.9898 13.840

Note: See the notes to Table 1.

6 Empirical analysis

In this section, we evaluate the performance of the proposed CCEMG Stein-like combined estimator

in forecasting the growth rate of real output. We use a quarterly data set of 18 industrialized

countries from 1979:Q1 to 2016:Q4.4 The predictors are: the real equity prices (eqit), real short

term interest rate (rit), term spread (lit − rit) where lit is real long term interest rate, and the

corresponding country-specific foreign variables for each of the predictors. The foreign variables

are generated using moving averages of the annual trade weights over three year period. The trade

weight are computed as shares of exports and imports for each country. Therefore, the h-step ahead

linear forecasting model is

yit+h = x′itβit + γ′ift + ϵit+h, (6.1)

4The countries are: Australia, Austria, Belgium, Canada, Finland, France, Germany, Italy, Japan, Netherlands,
Norway, New Zealand, Spain, Sweden, Switzerland, United Kingdom, USA, and China. The data is available from
Mohaddes and Raissi (2018).
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where x′it = (eqit, rit, lit − rit, eq
∗
it, r

∗
it, l

∗
it − r∗it), in which a “star” indicates the foreign variables.

We compute h-step ahead forecasts (h = 1, 4) for different estimation methods (i.e., the CCEMG

Stein-like combined estimator, the CCEMG post-break estimator, and the CCEMG full-sample

estimator), using both rolling and expanding window forecasts. The estimated value for the

unobserved factors is f̂t = w̄t, which is the cross-sectional averages of the dependent and

independent variables. Each time that we expand the window, we first estimate the break point and

then obtain forecasts based on the CCEMG Stein-like combined estimator, the CCEMG post-break

estimator, and the CCEMG full-sample estimator. The method of estimating the break point is

the standard least-squares, i.e., minimizing the overall sum of squared residuals, see Baltagi et

al. (2016). The rolling window forecasts is based on the most recent 10 years (40 quarters) of

observations.

In order to evaluate the performance of our proposed CCEMG Stein-like combined estimator,

we compute its mean squared forecast errors (MSFE) and compare it with those of the CCEMG

post-break estimator and the CCEMG full-sample estimator. For this purpose, we divide the

sample of observations into two parts. The first T observations are used as the initial in-sample

estimation period, and the remaining observations are the pseudo out-of-sample evaluation period.

We consider two different out-of-sample evaluation periods, 1995:Q1-2016:Q4 and 2005:Q1-2016:Q4,

to see the forecasting performance of estimators with this choice.

Table 3 reports the results based on both rolling window and expanding window forecasts. In

the heading of the table, “CCEMG Stein” reports the MSFE results for the CCEMG Stein-like

combined estimator, “CCEMG Postbk” reports the MSFE results for the CCEMG post-break

estimator, and “CCEMG Full” shows the MSFE results for the CCEMG full-sample estimator.

Panel A shows the MSFEs with the out-of-sample evaluation periods of 1995:Q1-2016:Q4, while

the results with the out-of-sample evaluation periods of 2005:Q1-2016:Q4 are presented in Panel B.

To see whether the CCEMG Stein-like combined estimator significantly outperforms the CCEMG

post-break estimator across all individuals, we report a panel version of the Diebold and Mariano

test introduced by Pesaran et al. (2009) in Table 3, indicated by asterisks. The 1% significance level

is denoted by ∗∗∗. The break point estimation is stable throughout the estimation procedure. For

example, for one-step-ahead forecast and the out-of-sample evaluation periods of 2005:Q1-2016:Q4,

for the first 18 expanding windows a break point around dot-com bubble of early 2000 is estimated
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Table 3: Empirical MSFE results for forecasting output growth

Rolling Window Expanding Window

h CCEMG Stein CCEMG Postbk CCEMG Full CCEMG Stein CCEMG Postbk CCEMG Full

Panel A: 1995:Q1-2016:Q4

1 21.979∗∗∗ 46.763 22.028 21.800∗∗∗ 23.477 21.858

4 22.802∗∗∗ 27.522 23.252 22.489∗∗∗ 24.079 22.381

Panel B: 2005:Q1-2016:Q4

1 23.404∗∗∗ 69.608 23.908 23.722∗∗∗ 25.895 23.880

4 24.323∗∗∗ 33.138 25.218 24.426∗∗∗ 26.204 24.136

Note: This table reports the empirical MSFE results for the CCEMG Stein-like combined
estimator, CCEMG post-break estimator, and CCEMG full-sample estimator. The
first column shows different forecast horizons, h. Panel A reports the results with
the out-of-sample evaluation periods of 1995:Q1-2016:Q4, while the results with the
out-of-sample evaluation periods of 2005:Q1-2016:Q4 are presented in Panel B. An asterisk,
∗∗∗, denotes forecast that is significantly better than that of obtained from the CCEMG
post-break forecasts based on the panel Diebold–Mariano test statistic at 1% significance
level.

with the estimated CCEMG Stein-like combination weight, α̂, roughly between 0.1 and 0.3. For

the remaining expanding windows, a break point around financial crises of 2008 is detected with

the range of α̂ approximately between 0.5-1. We see a similar pattern for other specifications.

Based on the results, the CCEMG Stein-like combined estimator has a lower MSFE than that of

the CCEMG post-break estimator and the CCEMG full-sample estimator for various out-of-sample

evaluation periods and forecast horizons. This out-performance is statistically significant at 1%

significance level. In Panel A and for h = 1, the out-performance of the CCEMG Stein-like

combined estimator relative to the CCEMG post-break estimator is 52.9% (7.1%) for the rolling

window (expanding window) forecasts. When h = 4, the out-performance is 17.2% (6.6%) for the

rolling window (expanding window) forecasts. When h = 1 and with the out-of-sample evaluation

periods of 2005:Q1-2016:Q4, the out-performance of the CCEMG Stein-like combined estimator

relative to the CCEMG post-break estimator is 66.3% (8.4%) for the rolling window (expanding

window) forecasts. The out-performance becomes 26.6% (6.7%) for the rolling window (expanding

window) forecasts when h = 4.
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7 Conclusion

In this paper, we introduce a Stein-like combined estimator for estimating the slope coefficients

of large heterogenous panel models with a general multifactor error structure which is due to

unobservable common factors. The proposed CCE Stein-like combined estimator is the weighted

averages of the CCE post-break estimator (i.e., using observations in the most recent regime) and

the CCE full-sample estimator (i.e., using full-sample of observations). The combination weight

is inversely proportional to the difference between the CCE post-break and the CCE full-sample

estimators, and therefore measures the magnitude of the structural break. Thus, for a large break

size, it assigns a small weight to the CCE full-sample estimator (which is biased), and a large

weight to the CCE post-break estimator. The opposite is true for a small break size. We establish

the asymptotic distribution and the asymptotic risk of the proposed CCE Stein-like combined

estimator, and find the conditions under which the combined estimator uniformly out-performs the

CCE post-break estimator, for any break sizes and break points. Furthermore, we establish the

asymptotic distribution and the asymptotic risk for the CCE mean group (CCEMG) Stein-like

combined estimator, and show that its asymptotic risk is smaller than that of the CCEMG

post-break estimator. Monte Carlo simulations, and the empirical application of forecasting output

growth rates of 18 industrialized countries show the significant superiority of using the proposed

CCEMG Stein-like combined estimator over the alternative methods.

Even though the proposed combined estimators reduce the asymptotic risk, it is an open

question whether this reduction can be used to improve inference. Besides, the considered regression

model in the paper allows for dynamic structures through the general dynamics of the common

effects in the error term. Alternatively, lagged dependent variables can be included as the regressors

in the model. Furthermore, the extension of the proposed CCE Stein-like combined estimator to

panel vector autoregressive models and nonlinear models under structural breaks have not been

explored yet. These are beyond the scope of the present paper and we leave them for future work.
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A Appendix: Mathematical details

A.1 Proof of Theorem 3.1:

First, we note that βi(T1) = βi(1) +
δi√
T
1(t > T1) =

βi(1) for t = 1, . . . , T1,

βi(2) = βi(1) +
δi√
T

for t = T1 + 1, . . . , T,

where 1(·) is an indicator function. Denote ūt =

(
ϵ̄t +

∑N
i=1 θiv

′
itβi(1)

v̄t

)
and

∆ūt(T1) =



(
0
0

)
, for t = 1, . . . , T1,

∑N
i=1 θiv

′
it

δi√
T

0

 , for t = T1 + 1, . . . , T.

Thus, ūt(T1) in (3.3) is equal to ūt(T1) = ūt +∆ūt(T1).

Let Ū︸︷︷︸
T×(k+1)

≡ (ū′(1), ū
′
(2))

′ = (ū1, . . . , ūT1 , ūT1+1 . . . , ūT )
′, and ∆Ū(T1)︸ ︷︷ ︸

T×(k+1)

≡
(
∆ū′(1),∆ū

′
(2)

)′
=

((
0
0

)
, . . . ,

(
0
0

)
,

(∑N
i=1 θiv

′
i,T1+1

δi√
T

0

)
, . . . , ,

(∑N
i=1 θiv

′
i,T

δi√
T

0

))
. Therefore, by stacking the

cross-sectional averages within each regime in (3.3), w̄t = C̄ ′(T1)ft + ūt(T1), we get


W̄(1) = F(1)C̄(1) + Ū(1) for t = 1, . . . , T1,

W̄(2) = F(2)C̄(2) + Ū(2) for t = T1 + 1, . . . , T,

(A.1)

where Ū(1) = ū(1) + ∆ū(1) and Ū(2) = ū(2) + ∆ū(2). With this notation, we obtain the following

Lemma, which can be proved similarly to Lemmas 1-3 in Pesaran (2006) and Lemma 5 in Baltagi

et al. (2016).
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Lemma A.1: Under Assumptions 1-7,

(i)
F ′
(1)

F(1)

T1
= Op(1);

F ′
(2)

F(2)

T−T1
= Op(1);

(ii)
Ū ′
(1)

Ū(1)

T1
= Op

(
1
N

)
;
Ū ′
(2)

Ū(2)

T−T1
= Op

(
1
N

)
;

(iii)
F̄ ′
(1)

Ū(1)

T1
= Op

(
1

T
√
N

)
;
F̄ ′
(2)

Ū(2)

T−T1
= Op

(
1

T
√
N

)
;

(iv)
X̄′

i(1)
F(1)

T1
= Op(1);

X̄′
i(2)

F(2)

T−T1
= Op(1);

(v)
X̄′

i(1)
Ū(1)

T1
= Op

(
1
N

)
+Op

(
1√
NT

)
;
X̄′

i(2)
Ū(2)

T−T1
= Op

(
1
N

)
+Op

(
1√
NT

)
;

Using (A.1), we obtain

1

T1
W̄ ′

(1)W̄(1) =
1

T1
C̄ ′
(1)F

′
(1)F(1)C̄(1) +

1

T1
C̄ ′
(1)F

′
(1)Ū(1) +

1

T1
Ū ′
(1)F(1)C̄(1) +

1

T1
Ū ′
(1)Ū(1)

=
1

T1
C̄ ′
(1)F

′
(1)F(1)C̄(1) + E(1) = Op(1),

(A.2)

where E(1) ≡ 1
T1
C̄ ′
(1)F

′
(1)Ū(1) + 1

T1
Ū ′
(1)F(1)C̄(1) + 1

T1
Ū ′
(1)Ū(1) = Op

(
1
N

)
+ Op

(
1

T
√
N

)
, and

1
T1
C̄ ′
(1)F

′
(1)F(1)C̄(1) = Op(1) by Lemma A.1. Thus, using (A.2),

( 1

T1
C̄ ′
(1)F

′
(1)F(1)C̄(1)

)−1
−
( 1

T1
W̄ ′

(1)W̄(1)

)−1
=
( 1

T1
C̄ ′
(1)F

′
(1)F(1)C̄(1)

)−1

−
(
I +

( 1

T1
C̄ ′
(1)F

′
(1)F(1)C̄(1)

)−1
E(1)

)−1( 1

T1
C̄ ′
(1)F

′
(1)F(1)C̄(1)

)−1

=

[
I −

(
I +

( 1

T1
C̄ ′
(1)F

′
(1)F(1)C̄(1)

)−1
E(1)

)−1
]( 1

T1
C̄ ′
(1)F

′
(1)F(1)C̄(1)

)−1

=

∞∑
l=1

(−1)l+1
((
C̄ ′
(1)

F ′
(1)F(1)

T1
C̄(1)

)−1
E(1)

)l(
C̄ ′
(1)

F ′
(1)F(1)

T1
C̄(1)

)−1
≡ f(E(1)).

(A.3)
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Therefore,
(

1
T1
W̄ ′

(1)W̄(1)

)−1
=
(

1
T1
C̄ ′
(1)F

′
(1)F(1)C̄(1)

)−1
+ f(E(1)). It follows that

Mw(1)F(1) =
(
IT1 − W̄(1)

( 1

T1
W̄ ′

(1)W̄(1)

)−1 1

T1
W̄ ′

(1)

)
F(1)

=

(
IT1 −

(
F(1)C̄(1) + Ū(1)

)((
C̄ ′
(1)

F ′
(1)F(1)

T1
C̄(1)

)−1
+ f(E(1))

) 1

T1

(
F(1)C̄(1) + Ū(1)

)′)
F(1)

=

(
IT1 −

(
F(1)C̄(1)

)(
C̄ ′
(1)F

′
(1)F(1)C̄(1)

)−1(
F(1)C̄(1)

)′)
F(1)

−
(
F(1)C̄(1)

)(
f(E(1))

( 1

T1
F(1)C̄(1)

)′
+
((
C̄ ′
(1)

F ′
(1)F(1)

T1
C̄(1)

)−1
+ f(E(1))

) 1

T1
Ū ′
(1)

)
F(1)

− Ū(1)

((
C̄ ′
(1)

F ′
(1)F(1)

T1
C̄(1)

)−1
+ f(E(1))

)(F(1)C̄(1)

T1
+
Ū(1)

T1

)′
F(1)

= F(1)D1(1) + Ū(1)D2(1),

(A.4)

where
(
IT1 −

(
F(1)C̄(1)

)(
C̄ ′
(1)F

′
(1)F(1)C̄(1)

)−1(
F(1)C̄(1)

)′)
F(1) =

(
IT1 − F(1)

(
F ′
(1)F(1)

)−1
F ′
(1)

)
F(1) =

0, see Pesaran (2006). Also,

D1(1) ≡ −C̄(1)f(E(1))C̄
′
(1)

F ′
(1)F(1)

T1
− C̄(1)

((
C̄ ′
(1)

F ′
(1)F(1)

T1
C̄(1)

)−1
+ f(E(1))

)
Ū ′
(1)F(1)

T1

= Op

( 1
N

)
+Op

( 1

T1
√
N

)
+Op(1)×Op

( 1

T1
√
N

)
= Op

( 1
N

)
+Op

( 1

T1
√
N

)
,

(A.5)

and

D2(1) ≡ −
((
C̄ ′
(1)

F ′
(1)F(1)

T1
C̄(1)

)−1
+ f(E(1))

)(
C̄ ′
(1)

F ′
(1)F(1)

T1
+
Ū ′
(1)F(1)

T1

)
= Op(1). (A.6)

Thus, using (A.4), we obtain

Mw(1)F(1)γi = F(1)D1(1)γi + Ū(1)D2(1)γi

= Op

( 1
N

)
+Op

( 1

T1
√
N

)
+Op

( 1√
N

)
= Op

( 1√
N

)
.

(A.7)

Similarly, for the second regime Mw(2)F(2)γi = F(2)D1(2)γi + Ū(2)D2(2)γi = Op

(
1√
N

)
, where

D1(2) ≡ − C̄(2)f(E(2))C̄
′
(2)

F ′
(2)

F(2)

T−T1
− C̄(2)

((
C̄ ′
(2)

F ′
(2)

F(2)

T−T1
C̄(2)

)−1
+ f(E(2))

)
Ū ′
(2)

F(2)

T−T1
= Op

(
1
N

)
+

Op

(
1

T1

√
N

)
, and D2(2) ≡ −

((
C̄ ′
(2)

F ′
(2)

F(2)

T−T1
C̄(2)

)−1
+ f(E(2))

)(
C̄ ′
(2)

F ′
(2)

F(2)

T−T1
+

Ū ′
(2)

F(2)

T−T1

)
= Op(1).

27



Using the above derivations, we establish the asymptotic distributions for the CCE estimators.

The CCE full-sample estimator, for each i, is written as

β̃i,Full =
(
X̃ ′

iX̃i

)−1
X̃ ′

iỸi

=
(
X̃ ′

iX̃i

)−1(
X̃ ′

i(1)X̃i(1)

(
βi(1) − βi(2)

)
+ X̃ ′

i(1)ϵ̃
∗
i(1) + X̃ ′

i(2)ϵ̃
∗
i(2) + X̃ ′

iX̃iβi(2)

)
= βi(2) +

(
X̃ ′

iX̃i

)−1(
X̃ ′

i(1)X̃i(1)

(
βi(1) − βi(2)

)
+ X̃ ′

i(1)Mw(1)
F(1)γi + X̃ ′

i(1)ϵ̃i(1)

+ X̃ ′
i(2)Mw(2)

F(2)γi + X̃ ′
i(2)ϵ̃i(2)

)
(A.8)

where Ỹi =
(
Ỹ ′
i(1), Ỹ

′
i(2)

)′
is a T × 1 vector of the transformed dependent variable, and X̃i =(

X̃ ′
i(1), X̃

′
i(2)

)′
is a T×k matrix of the transformed regressors. Therefore, the asymptotic distribution

of the CCE full-sample estimator, for each i, is

√
T
(
β̃i,Full − βi(2)

)
=
(X̃ ′

iX̃i

T

)−1(X̃ ′
i(1)X̃i(1)

T1
δib1 +

X̃ ′
i ϵ̃i√
T

+

√
b1
T1
X̃ ′

i(1)Mw(1)
F(1)γi

+

√
(1− b1)

T − T1
X̃ ′

i(2)Mw(2)
F(2)γi

)

=
(X̃ ′

iX̃i

T

)−1[X̃ ′
i(1)X̃i(1)

T1
δib1 +

X̃ ′
i ϵ̃i√
T

+Op

(√T
N

)
+Op

( 1√
N

)]
d−→ N

(
b1Σ

−1
i Σi(1)δi, σ

2
iΣ

−1
i

)
.

(A.9)

where ϵ̃i = (ϵ̃′i(1), ϵ̃
′
i(2))

′, σ2iΣ
−1
i ≡ plim

T→∞
σ2i
( X̃′

iX̃i

T

)−1
= Vi,Full is the variance of the CCE full-sample

estimator, Σi(1) ≡ plim
T→∞

( X̃i(1)
′X̃i(1)
T1

)
, and by using Lemma A.1

1√
T1
X̃ ′

i(1)Mw(1)
F(1)γi =

1√
T1
X ′

i(1)Mw(1)
F(1)γi

=
1√
T1
X ′

i(1)F(1)D1(1)γi +
1√
T1
X ′

i(1)Ū(1)D2(1)γi

=
√
T
(
Op

( 1
N

)
+Op

( 1

T
√
N

)
+Op

( 1
N

)
+Op

( 1√
NT

))
= Op

(√T
N

)
+Op

( 1√
N

)
.

(A.10)

Similarly, 1√
T−T1

X̃ ′
i(2)Mw(2)

F(2)γi = 1√
T−T1

X ′
i(2)Mw(2)

F(2)γi = Op

(√
T

N

)
+ Op

(
1√
N

)
. This order is
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asymptotically negligible when
√
T/N → 0 as (N,T ) → ∞. Therefore, the additional condition of

√
T/N → 0 as (N,T ) → ∞ is needed to prove this Theorem.

Besides, the asymptotic distribution of the CCE post-break estimator is

√
T
(
β̃i(2) − βi(2)

)
=
( 1√

1− b1

)(X̃ ′
i(2)X̃i(2)

T − T1

)−1
(
X̃ ′

i(2)ϵ̃i(2)√
T − T1

+
1√

T − T1
X̃ ′

i(2)Mw(2)
F(2)γi

)

=
( 1√

1− b1

)(X̃ ′
i(2)X̃i(2)

T − T1

)−1[(X̃ ′
i(2)ϵ̃i(2)√
T − T1

)
+Op

(√T
N

)
+Op

( 1√
N

)]
d−→ N

(
0,

1

1− b1
σ2iΣ

−1
i(2)

)
,

(A.11)

where 1
1−b1

σ2iΣ
−1
i(2) ≡ plim

T→∞

1
1−b1

σ2i
( X̃′

i(2)
X̃i(2)

T−T1

)−1
= Vi(2) is the asymptotic variance of the CCE

post-break estimator. Using (A.9) and (A.11), the joint asymptotic distribution of the CCE

full-sample estimator and the CCE post-break estimator is derived. This completes the proof

of Theorem 3.1. ■

A.2 Proof of Theorem 3.2:

The asymptotic risk for the CCE Stein-like combined estimator, for any user specific positive

definite choice matrix W, and for each i = 1, . . . , N , is

ρ
(
β̃i,W

)
= E

[
T
(
β̃i − βi(2)

)′W (
β̃i − βi(2)

)]
= T E

[(
β̃i(2) − βi(2)

)
− α

(
β̃i(2) − β̃i,Full

)]′
W
[(
β̃i(2) − βi(2)

)
− α

(
β̃i(2) − β̃i,Full

)]
= ρ
(
β̃i(2),W

)
+ τ2 E

[
(Z ′

iMiZi)
−2Z ′

iAiZi

]
− 2τ E

[
(Z ′

iMiZi)
−1Z ′

iBiZi

]
,

(A.12)

where Mi ≡ V
1/2
i G

(
Vi(2) − Vi,Full

)−1
G′ V

1/2
i , Ai ≡ V

1/2
i GWG′V

1/2
i and Bi ≡ V

1/2
i GWG′

2V
1/2
i .

Lemma A.2: Let χ2
p(µi) denote a noncentral chi-square random variable with the noncentral

parameter µi, for each i = 1, . . . , N, and the degrees of freedom p. Besides, let p denote a positive

integer such that p > 2r. Then

E
[(
χ2
p(µi)

)−r]
= 2−re−µi

Γ(p2 − r)

Γ(p2)
1F1

(p
2
− r;

p

2
;µi

)
,
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where 1F1(.; .; .) is the confluent hypergeometric function which is defined as 1F1(a; b;µi) =∑∞
n=0

(a)n µn
i

(b)n n! , where (a)n = a(a+ 1) . . . (a+ n− 1) and (a)0 = 1. See Ullah (1974).

Lemma A.3: The definition of the confluent hypergeometric function implies the following

relations:

1. 1F1(a; b;µi) = 1F1(a+ 1; b;µi)− µi

b 1F1(a+ 1; b+ 1;µi),

2. 1F1(a; b;µi) =
b−a
b 1F1(a; b+ 1;µi) +

a
b 1F1(a+ 1; b+ 1;µi), and

3. (b− a− 1) 1F1(a; b;µi) = (b− 1) 1F1(a; b− 1;µi)− a 1F1(a+ 1; b+ 1;µi).

See Lebedev (1972), pp. 262.

Lemma A.4: Let the T × 1 vector Zi be normally distributed with mean vector θi and covariance

matrix IT , Mi be any T × T idempotent matrix with rank r, and Ai be any T × T matrix, for each

i = 1, . . . , N . We assume ϕ(·) is a Borel measurable function. Then:

E
[
ϕ
(
Z ′
iMiZi

)
Z ′
iAiZi

]
= E

[
ϕ
(
χ2
r+2(µi)

)]
tr(AiMi) + E

[
ϕ
(
χ2
r+4(µi)

)]
θ′iMiAiMiθi

+ E
[
ϕ
(
χ2
r(µi)

)]
tr
(
Ai −AiMi

)
+ E

[
ϕ
(
χ2
r(µi)

)]
θ′i
(
IT −Mi

)
Ai

(
IT −Mi

)
θi

+ E
[
ϕ
(
χ2
r+2(µi)

)](
θ′iAiMiθi + θ′iMiAiθi − 2θ′iMiAiMiθi

)
,

where µi ≡
θ′iMiθi

2 is the non-centrality parameter. See Lee et al. (2022) for the proof.

By using Lemmas A.2-A.4, we calculate the asymptotic risk for the CCE Stein-like combined

estimator in (A.12) as

ρ
(
β̃i,W

)
= ρ
(
β̃i(2),W

)
+ τ2 E

[
(Z ′

iMiZi)
−2Z ′

iAiZi

]
− 2τ E

[
(Z ′

iMiZi)
−1Z ′

iBiZi

]
= ρ
(
β̃i(2),W

)
+ τ2

{ [
χ2
k+2(µi)

]−2
tr
(
AiMi

)
+ E

[
χ2
k+4(µi)

]−2
η′iMiAiMiηi

}
− 2τ

{
E
[
χ2
k+2(µi)

]−1
tr
(
BiMi

)
+ E

[
χ2
k+4(µi)

]−1
η′iMiBiMiηi

+ E
[
χ2
k+2(µi)

]−1
(
η′iBiMiηi + η′iMiBiηi − 2η′iMiBiMiηi

)}
= ρ
(
β̃i(2),W

)
+ τ2

{[1
4
e−µi

Γ(k2 − 1)

Γ(k2 + 1)
1F1

(k
2
− 1;

k

2
+ 1;µi

)]
tr(Ai)
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+
[1
4
e−µi

Γ(k2 )

Γ(k2 + 2)
1F1

(k
2
;
k

2
+ 2;µi

)](
η′iAiηi

)}

− 2τ

{[1
2
e−µi

Γ(k2 )

Γ(k2 + 1)
1F1

(k
2
;
k

2
+ 1;µi

)](
tr(Ai)− η′iAiηi

)
+
[1
2
e−µi

Γ(k2 + 1)

Γ(k2 + 2)
1F1

(k
2
+ 1;

k

2
+ 2;µi

)](
η′iAiηi

)}

= ρ
(
β̃i(2),W

)
+ τ2

{[ η′iAiηi
(k − 2)η′iMiηi

][
e−µi

1F1

(k
2
− 1;

k

2
;µi

)]
−
[ η′iAiηi
(k − 2)η′iMiηi

− tr(Ai)

k(k − 2)

][
e−µi

1F1

(k
2
− 1;

k

2
+ 1;µi

)]}

− 2 τ

k − 2

{[
tr(Bi)−

2 η′iAiηi
η′iMiηi

][
e−µi

1F1

(k
2
− 1;

k

2
;µi

)]

−
[
2
tr(Bi)

k
− 2

η′iAiηi
η′iMiηi

][
e−µi

1F1

(k
2
− 1;

k

2
+ 1;µi

)]}

= ρ
(
β̃i(2),W

)
− τ η′iAiηi
k(k + 2)

[
2
(tr(Ai) η

′
iMiηi

η′iAiηi
− 2
)
− τ
][
e−µi

1F1

(k
2
;
k

2
+ 2;µi

)]
− τ tr(Ai)

k(k − 2)

[
2(k − 2)− τ

][
e−µi

1F1

(k
2
− 1;

k

2
+ 1;µi

)]
, (A.13)

where Mi is an idempotent matrix with rank k, AiMi = MiAi = Ai, MiAiMi = Ai, BiMi = Ai,

MiBi = Bi, Biηi = 0, MiBiMi = Ai, and 1F1

(
k
2 − 1; k2 ;µi

)
− 1F1

(
k
2 − 1; k2 + 1;µi

)
=

2µi (k−2)
k(k+1)

[
1F1

(
k
2 ;

k
2 + 2;µi

)]
. Thus, the asymptotic risk of the CCE Stein-like combined estimator

is less than that of the CCE post-break estimator for any positive definite choice of W under the

following two conditions:

0 ≤ τ ≤ 2
(tr(Ai) η

′
iMiηi

η′iAiηi
− 2
)
, (A.14)

and

0 ≤ τ ≤ 2(k − 2). (A.15)
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The upper bound in (A.14) is positive if

tr(Ai) > Sup
Φ

2η′iAiηi
η′iMiηi

,

tr
(
W(Vi(2) − Vi,Full)

)
> Sup

Φ

2 Φ′ (Vi(2) − Vi,Full)
1/2W(Vi(2) − Vi,Full)

1/2 Φ

Φ′Φ

tr
(
W(Vi(2) − Vi,Full)

)
> 2λmax

(
(Vi(2) − Vi,Full)

1/2W(Vi(2) − Vi,Full)
1/2
)
,

(A.16)

where Φ ≡ (Vi(2) − Vi,Full)
−1/2G′V

1/2
i ηi. Also, the upper bound in (A.15) is positive if k > 2.

Using the results in (A.13), the optimal value for the shrinkage parameter, denoted by τ∗i , is

τ∗i =
tr(Ai) η′iMiηi

η′iAiηi
− 2, which is positive so long as the condition in (A.16) is satisfied. Substituting

the optimal value of the shrinkage parameter into the asymptotic risk function in (A.13), if 0 ≤

τ ≤ 2
( tr(Ai) η′iMiηi

η′iAiηi
− 2

)
and the condition in (A.16) is hold, the asymptotic risk for the CCE

Stein-like combined estimator, for any user specific positive definite choice matrix W, and for each

i = {1, . . . , N}, is

ρ
(
β̃i,W

)
= ρ
(
β̃i(2),W

)
− 1

k − 2

[(tr(Ai) η
′
iMiηi

η′iAiηi
− 2
)2 ( η′iAiηi

η′iMiηi

)][
e−µi

1F1

(k
2
− 1;

k

2
;µi

)]

− 1

k − 2

[(tr(Ai) η
′
iMiηi

η′iAiηi

)2
− 4

][
η′iAiηi
η′iMiηi

− tr(Ai)

k

][
e−µi

1F1

(k
2
− 1;

k

2
+ 1;µi

)]
.

(A.17)

This shows that the asymptotic risk of the CCE Stein-like combined estimator is less than the

asymptotic risk of the CCE post-break estimator for all values of localizing parameter δi, even

very large values of break sizes. Thus, the CCE Stein-like combined estimator dominates the CCE

post-break estimator.

We note that for when W = (Vi(2) − Vi,Full)
−1, the asymptotic risk of the CCE Stein-like

combined estimator presented in (A.13) simplifies to the results of Theorem 3.2. Also, in this case,

the optimal value of the shrinkage parameter becomes τ∗ = k − 2, and the upper bound in (A.14)

becomes k > 2. Therefore, the CCE Stein-like combined estimator dominates the CCE post-break

estimator so long as k > 2. This completes the proof of Theorem 3.2. ■
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A.3 Proof of Theorem 4.1:

Under Assumption 8 of a random coefficient model, and the local alternative assumption, β(1) −

β(2) = δ1/
√
T , the asymptotic distribution of the CCEMG full-sample estimator is

β̃MG,Full =
1

N

N∑
i=1

β̃i,Full

=
1

N

N∑
i=1

βi(2) +
1

N

N∑
i=1

(
X̃ ′

iX̃i

)−1(
X̃ ′

i(1)X̃i(1)(βi(1) − βi(2)) + X̃ ′
i ϵ̃i + X̃ ′

i(1)Mw(1)
F(1)γi

+ X̃ ′
i(2)Mw(2)

F(2)γi

)
.

(A.18)

Therefore,

√
N
(
β̃MG,Full − β(2)

)
=

1√
N

N∑
i=1

νi,β(2)
+

1√
NT

N∑
i=1

(X̃ ′
iX̃i

T

)−1(X̃ ′
i(1)X̃i(1) b1

T1

√
T (βi(1) − βi(2))

+
X̃ ′

i ϵ̃i√
T

+

√
b1
T1
X̃ ′

i(1)Mw(1)
F(1)γi +

√
1− b1
T − T1

X̃ ′
i(2)Mw(2)

F(2)γi

)
=

1√
N

N∑
i=1

νi,β(2)
+

1√
NT

N∑
i=1

(X̃ ′
iX̃i

T

)−1(X̃ ′
i(1)X̃i(1)

T1
b1δ1

)

− 1√
N

N∑
i=1

(X̃ ′
iX̃i

T

)−1(X̃ ′
i(1)X̃i(1)

T1
b1(νi,β(2)

− νi,β(1)
)
)
+Op

( 1√
N

)
+Op

( 1√
T

)
d−→ N

(
b1cQδ1, VMG,Full

)
,

(A.19)

where
√

N
T → c as (N,T ) → ∞ in which c is a fixed constant, 1

N

∑N
i=1

( X̃′
iX̃i

T

)−1( X̃′
i(1)

X̃i(1)

T1

) p−→

Q, and VMG,Full is the asymptotic variance of the CCEMG full-sample estimator. The

variance estimator for VMG,Full suggested by Pesaran (2006) is given by 1
N−1

∑N
i=1(β̃i,Full −

β̃MG,Full)(β̃i,Full − β̃MG,Full)
′.

Besides, the order of the third term is derived as

V ar
( 1√

NT

N∑
i=1

(X̃ ′
iX̃i

T

)−1 X̃ ′
i ϵ̃i√
T

)
=

1

NT

N∑
i=1

(X̃ ′
iX̃i

T

)−1 X̃ ′
iV ar(ϵ̃i)X̃i

T

(X̃ ′
iX̃i

T

)−1
= Op

( 1
T

)
,

(A.20)
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implying that 1√
NT

∑N
i=1

(
X̃′

iX̃i

T

)−1 X̃′
i ϵ̃i√
T

= Op

(
1√
T

)
. Besides, using the results of (A.10), the

order of the forth term can be derived as

1√
NT

N∑
i=1

(X̃ ′
iX̃i

T

)−1
√
b1
T1
X̃ ′

i(1)Mw(1)
F(1) =

1√
NT

N∑
i=1

Op(1)
[
Op

(√T
N

)
+Op

( 1√
N

)]
= Op

( 1√
N

)
+Op

( 1√
T

)
.

(A.21)

The order of the fifth term can be derived similarly.

Furthermore, the asymptotic distribution of the CCEMG post-break estimator is

β̃MG(2) =
1

N

N∑
i=1

β̃i(2)

= β(2) +
1

N

N∑
i=1

νi,β(2)
+

1

N

N∑
i=1

(
X̃ ′

i(2)X̃i(2)

)−1(
X̃ ′

i(2)ϵ̃i(2) + X̃ ′
i(2)Mw(2)

F(2)γi

)
.

(A.22)

Therefore,

√
N
(
β̃MG(2) − β(2)

)
=

1√
N

N∑
i=1

νi,β(2)
+

1√
NT

N∑
i=1

(X̃ ′
i(2)X̃i(2)

T − T1

)−1( X̃ ′
i(2)ϵ̃i(2)√

1− b1
√
T − T1

+
X̃ ′

i(2)Mw(2)
F(2)γi

√
1− b1

√
T − T1

)
=

1√
N

N∑
i=1

νi,β(2)
+Op

( 1√
T

)
+Op

( 1√
N

)
d−→ N

(
0,Σβ(2)

)
,

(A.23)

where the orders of the second and third terms can be derived similar to the above. Using (A.19)

and (A.23), the joint asymptotic distribution of the CCEMG full-sample estimator and the CCEMG

post-break estimator is derived. This completes the proof of Theorem 4.1. ■
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A.4 Proof of Theorem 4.2:

ρ
(
β̃MG,W

)
= E

[
N
(
β̃MG − β(2)

)′W (
β̃MG − βi(2)

)]
= N E

[(
β̃MG(2) − β(2)

)
− α

(
β̃MG(2) − β̃MG,Full

)]′
W
[(
β̃MG(2) − β(2)

)
− α

(
β̃MG(2) − β̃MG,Full

)]
= ρ
(
β̃MG(2),W

)
+ τ2 E

[ 1

(Ż + η̇)′P (Ż + η̇)

]
− 2τ E

[
ψ(Ż + η̇)′GWG′

2Ż
]

= ρ
(
β̃MG(2),W

)
+ τ2 E

[ 1

(Ż + η̇)′P (Ż + η̇)

]
− 2τ E tr

[ ∂

∂(Ż + η̇)
ψ(Ż + η̇)′GWG′

2V̇
]

≤ ρ
(
β̃MG(2),W

)
− τ
[2(tr(A)− 2λmax(A)

)
− τ

E(Ż + η̇)′P (Ż + η̇)

]
≤ ρ
(
β̃MG(2),W

)
− τ
[2(tr(A)− 2λmax(A)

)
− τ

η̇′P η̇ + tr(PV̇ )

]
,

(A.24)

where the last inequality is Jensen’s, ψ(x) ≡ x
x′Px , and thus ∂

∂(x)ψ(x)
′ =

(
1

x′Px

)
I− 2Pxx′

(x′Px)2
. Besides,

using Stein’s Lemma, Lemma 2 in Hansen (2016), we obtain

E
[
ψ(Ż + η̇)′GWG′

2Ż
]
= E tr

[ ∂

∂(Ż + η̇)
ψ(Ż + η̇)′GWG′

2V̇
]

= E
[ tr

(
GWG′

2V̇
)

(Ż + η̇)′P (Ż + η̇)

]
− 2E

[ tr((Ż + η̇)′GWG′
2V̇ P (Ż + η̇)

)(
(Ż + η̇)′P (Ż + η̇)

)2 ]
= E

[ tr
(
A
)

(Ż + η̇)′P (Ż + η̇)

]
− 2E

[ tr((Ż + η̇)′B′
1AB1(Ż + η̇)

)(
(Ż + η̇)′P (Ż + η̇)

)2 ]
≥ E

[ tr(A− 2λmax(A)
)

(Ż + η̇)′P (Ż + η̇)

]
,

(A.25)

where A ≡ WG′
2V̇ G, B1 = W1/2G′, B′

1B1 = P , and B′
1AB1 ≤ B′

1B1λmax(A) where λmax(A)

denotes the maximum eigenvalues of A. This completes the proof of Theorem 4.2. ■
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