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Abstract

This paper explores the continuous-time limit of a class of Quasi Score-Driven (QSD) models
that characterize volatility. As the sampling frequency increases and the time interval tends
to zero, the model weakly converges to a continuous-time stochastic volatility model where
the two Brownian motions are correlated, thereby capturing the leverage effect in the market.
Subsequently, we identify that a necessary condition for non-degenerate correlation is that
the distribution of driving innovations differs from that of computing score, and at least one
being asymmetric. We then illustrate this with two typical examples. As an application, the
QSD model is used as an approximation for correlated stochastic volatility diffusions and
quasi maximum likelihood estimation is performed. Simulation results confirm the method’s
effectiveness, particularly in estimating the correlation coefficient.

Keywords: Quasi score-driven models, Continuous-time limit, Weak convergence,
Stochastic volatility models, Quasi approximate maximum likelihood estimation
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1. introduction

Since Engle (1982) discovered conditional heteroskedasticity in economic data, time series
models with time-varying parameters, especially variance, have gained increasing attention
in financial research, with the GARCH model being the most well-known (Bollerslev, 1986).
Numerous extensions within the GARCH family have since been developed (e.g., Nelson,
1991; Glosten et al., 1993; Ding et al., 1993). Essentially, they are all observation-driven
models, where the updating equations for parameters are based on observations. For exam-
ple, the GARCH(1,1)-M model for the log asset price X is given by:

Xn = Xn−1 + cvn + yn,

vn+1 = ω + βvn + αy2n,
(1.1)

where yn =
√
vnεn is the innovation of Xn, {εn}

i.i.d.∼ N(0, 1), and vn is actually the condi-
tional variance of the innovation. The variance update depends on the squared magnitude
of current returns—large returns lead to higher future variance. However, sometimes such
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large deviations may just be accidental rather than systematic, implying that the future
variance should not increase excessively. This issue is more pronounced when ε follows a
heavy-tailed distribution, such as in the t-GARCH model with Student’s t-distributed in-
novations (Bollerslev, 1987). Empirical evidence suggests that the prediction of its variance
often results in overestimation (Laurent et al., 2016).

Based on this consideration, Harvey and Chakravarty (2008) and Creal et al. (2013)
proposed the Generalized Autoregressive Score (GAS) model independently. The key im-
provement of this model lies in the parameter updating equation is driven by ∇n, the
derivative of the log conditional density of innovation with respect to the parameter. This
derivative, known as the score, gives the model its alternative name, the Score-Driven (SD)
model. The model not only generalizes and enhances many time series models but also
demonstrates good empirical performance in fields such as economics, finance, and biology.
Recently, it has been shown to be optimal in reducing the global Kullback-Leibler divergence
between the true distribution and the postulated distribution (Gorgi et al., 2024). Within
just a few years, more than 300 papers related to the SD model have been published (see
http://www.gasmodel.com/gaspapers.htm).

Recently, Blasques et al. (2023) proposed the Quasi Score-Driven (QSD) model, where
the score is no longer restricted to the conditional density of the observed innovations. This
means the distributions driving the innovation and computing the score can differ. For
instance, one can utilize a normal distribution to model innovations while employing the
score of a Student’s t-distribution to update parameters (as in Banulescu Radu et al., 2018),
or vice versa, as in t-GARCH models. Therefore, QSD models encompass not only SD
models but also other existing models, providing more flexibility.

On the other hand, continuous-time models are favored in theoretical finance research,
particularly for derivatives pricing. These models, including the well-known Black-Scholes
model, describe the dynamics of underlying assets through one or a set of stochastic differen-
tial equations (SDEs). Among them, the counterparts for addressing time-varying variance
include the Heston model (Heston, 1993), the 3/2 model (Heston, 1997), the 4/2 model
(Grasselli, 2017) and so on. These are all stochastic volatility models, which assume that
the volatility of asset follows a (typically mean-reverting) SDE.

Nelson (1990) was the first to bridge the gap between discrete and continuous-time
models in finance. Specifically, he demonstrated that under certain scaling conditions, the
continuous-time limit of equation (1.1) is exactly the following stochastic volatility model:

dXt = cvtdt+
√
vtdW

(1)
t ,

dvt = (ω − θvt)dt+ αvtdW
(2)
t ,

Cov(dW
(1)
t , dW

(2)
t ) = 0.

(1.2)

In this sense, (1.2) is also known as the continuous-time GARCH model in some financial lit-
eratures. More generally speaking, as the sampling frequency increases and the time interval
of a discrete-time Markov process goes to zero, it weakly converges to a diffusion process.
The related research goes back to Stroock and Varadhan (1979), Kushner (1984), Ethier
and Kurtz (1986). Therefore, it can be seen that discrete-time models are intricately related
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to its approximate continuous-time counterpart. A useful insight is that by estimating the
parameters of a discrete-time model, one can recover the parameters of the continuous-time
process it approximates. This idea is known as Quasi Approximate Maximum Likelihood
(QAML) estimation (see e.g. Barone-Adesi et al., 2005; Fornari and Mele, 2006; Stentoft,
2011; Hafner et al., 2017).

In the context of the SD model, Buccheri et al. (2021) explored the continuous-time limit
of SD volatility models, obtaining a bivariate diffusion where the two Brownian motions are
always independent. While this result recover Nelson’s limit in the case of normal density, it
actually fails to capture the well-known Heston model. In the Heston model, the Brownian
motions that drive returns and volatility are (negatively) correlated, a key feature that
characterizes the leverage effect in the market.

In this paper, we investigate the continuous-time limit of QSD volatility models and
also obtain a bivariate diffusion. However, unlike the result of the SD volatility models, the
two Brownian motions in the bivariate diffusion can be correlated. It is shown that for a
non-degenerate correlation coefficient, a necessary condition is that the distributions driving
the innovation differ from that of computing the score, and at least one being asymmet-
ric. Consequently, using QAML estimation based on the QSD model, we can recover the
parameters of stochastic volatility models with leverage effects, particularly the correlation
coefficient.

The paper is organized as follows. Section 2 introduces the QSD model we are interested
in. In Section 3, the main convergence results of the QSD volatility model and their proofs
are provided. Meanwhile, the convergence theorem used is briefly reviewed in Appendix
A. In Section 4, we illustrate two specific examples of QSD volatility models, QSD-T and
QSD-ST (see Blasques et al., 2023), and explore some properties of their continuous-time
limit through numerical simulation. Section 5 presents Monte Carlo experiments for QAML
estimation and filtering using the QSD model when the data-generating process (DGP) is a
correlated volatility diffusion. Finally, Section 6 concludes the paper.

2. QSD volatility models

Let {yn}n∈N denote a time series of asset log returns, where Fn = σ(yn, yn−1, . . . , y0) is
the σ-algebra generated by y up to time n. We assume that {yn} has the following form:

yn =
√
φ(λn)εn, εn|Fn−1

d∼ f(·,Θ). (2.1)

Here, f(·,Θ) is a probability density function with a zero mean, and Θ represents the
distribution’s parameters 1. Let λn ∈ R be a time-varying parameter, and in what follows, we
will focus on designing the update rule that governs its evolution. The function φ : R → R+

is monotonic and differentiable, referred to as the link function. In this case, the conditional

1Hereafter, we omit Θ and treat probability density functions from the same family but with different
parameters Θ1,Θ2 as distinct functions, denoted by fΘ1

(·), fΘ2
(·), or simply f(·), g(·).
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density of yn belongs to the class of scale family densities:

p(yn|Fn−1;λn) =
1√
φ(λn)

f

(
yn√
φ(λn)

)
.

Equation (2.1), together with the updating equation for λn, is commonly referred to as
volatility models because, if ε has unit variance, then

√
φ(λn) behaves like the conditional

volatility of yn. Moreover, if φ is the identity mapping restricted to R+, the time-varying
parameter λn is exactly conditional variance. Therefore, focusing on the QSD volatility
model means restricting the conditional density of yn to the scale family densities.

The core of the QSD model lies in the time-varying parameter λn, which satisfies the
following updating equation:

λn+1 = ω + βλn + αψ(yn, λn), (2.2)

where ω, β, α ∈ R are the parameters of equation. The key novelty in this expression is
the term ψ(yn, λn), which equals y2n in the GARCH model and S(λn)∇n in the SD model,
among others. In the SD model, the score ∇n represents the partial derivative of the log
conditional density of the observed innovations with respect to the parameter, i.e.

∇n =
∂ log p(yn|Fn−1;λn)

∂λn
.

This term is analogous to the gradient in gradient descent algorithms. S(·) is a continuous
function, referred to as the normalization function for the socre. In order to interpret the
curvature of the log density function, Creal et al. (2013) sets S(λn) = [E(∇2

n|Fn−1)]
−a, the

inverse of the conditional Fisher information raised to a power. Common choices for a are
a = 0, 1/2, 1.

In this paper, we refer to Blasques et al. (2023) and specify ψ as a form more closely
related to the SD model:

ψ(yn, λn) = S(λn)
∂ log q(yn, λn)

∂λn
, (2.3)

where q(yn, λn) is a scale family density function but not necessarily p(yn|Fn−1;λn). More
specifically, q(yn, λn) is a hypothetical conditional density of the observed innovations, where
εn|Fn−1 in (2.1) follows a probability density g(·) rather than the ture density f(·). We adopt

the notation ∇n for the score used in the SD model, and similarly denote ∂ log q(yn,λn)
∂λn

as q∇n,
called quasi score.

The QSD volatility model studied in this paper is constructed by combining (2.1), (2.2),
(2.3), and using Xn to represent the log price as in (1.1):{

Xn = Xn−1 + cλn + yn,

λn+1 = ω + βλn + αS(λn)
q∇n,

(2.4)
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where yn =
√
φ(λn)εn is the innovation of Xn, and εn|Fn−1

d∼ f(·). Note that in (2.4),
conditioned on λn, λn+1 is actually an Fn-measurable random variable. Therefore, we define
Zn = (Xn, λn+1), and obtain a new σ-algebra Fn = σ(Zn, Zn−1, . . . , Z0, λ0).

To study the continuous-time limit of {Zn}n∈N, we begin by associating the discrete time

indices in N with a time interval h, thereby defining the process {Z(h)
kh }k∈N which takes values

at times {0, h, 2h, . . .}. Next, by connecting these values in a stepwise manner, we construct

a càdlàg process {Z(h)
t }t≥0, which is a random element taking values in D-space equipped

with the Skorokhod topology. Finally, we consider the weak convergence of {Z(h)
t } as h→ 0.

The detailed steps of this procedure are outlined in the Appendix A.1.
Therefore, we first associate the QSD volatility model (2.4) to the time interval h, result-

ing in a two-dimensional discrete-time Markov process Z
(h)
kh = (X

(h)
kh , λ

(h)
(k+1)h), with σ-algebra

Fkh = σ(Z
(h)
kh , Z

(h)
(k−1)h, . . . , Z

(h)
0 , λ

(h)
0 , kh). It follows that{

X
(h)
kh = X

(h)
(k−1)h + chλ

(h)
kh + y

(h)
kh ,

λ
(h)
(k+1)h = ωh + βhλ

(h)
kh + αhS(λ

(h)
kh )

q∇(h)
kh .

(2.5)

Where,

y
(h)
kh =

√
φ(λ

(h)
kh )ε

(h)
kh , h−1/2ε

(h)
kh

∣∣F(k−1)h
d∼ f(·),

and the quasi score

q∇(h)
kh =

∂ log q(y
(h)
kh , λ

(h)
kh )

∂λ
(h)
kh

, q(y, λ) =
1√
φ(λ)h

g

(
y√
φ(λ)h

)
.

Recall that in our setting, f is a probability density function with zero mean, while g is
another probability density function, which may differ from f .

Following the same procedure detailed in the Appendix A.1, we obtain its continuous-
time process Z

(h)
t = (X

(h)
t , λ

(h)
t ) based on Z

(h)
kh , and denote F (h)

t as its generated σ-algebra.

3. Main results

In this section, we derive the weak convergence limit of Z
(h)
t as h→ 0. The proof of the

main result consists in an application of a general functional central limit theorem presented
in Stroock and Varadhan (1979). Here, we utilize a simpler, though somewhat less general,
version proposed in Nelson (1990), which is retailed in the Appendix A.2.

According to the Conditions 1 of Theorem 5, we need to examine the ratio of certain
conditional moments of the process increments to h as h→ 0, and the most important term
in the process is the quasi socre q∇. We therefore begin by proving the following Lemma 1.

Lemma 1. For every t ≥ 0, l ∈ N, as h → 0, the moments E[(q∇(h)
t+h)

l|F (h)
t ] = O(1), while

E[q∇(h)
t+hε

(h)
t+h|F

(h)
t ] = O(h1/2).
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Proof. Firstly, since the condition distributions of {ε(h)kh }k∈N are independent of time, the two
expectations above are independent of t. For simplicity, we omit superscripts and subscripts
in the following statements2.

q∇ =
∂ log q(y, λ)

∂λ
=

∂

∂λ

[
log

1√
φ(λ)h

g

(
y√
φ(λ)h

)]

=
−φ′(λ)

2φ(λ)

1 + g′
(

y√
φ(λ)h

)
g

(
y√
φ(λ)h

) y√
φ(λ)h

 .
Let u = y√

φ(λ)h
, du = 1√

φ(λ)h
dy, then,

E
[
q∇l|F

]
=

∫ ∞

−∞

q∇l 1√
φ(λ)h

f

(
y√
φ(λ)h

)
dy

=

[
−φ′(λ)

2φ(λ)

]l ∫ ∞

−∞

[
1 +

g′ (u)

g (u)
u

]l
f (u) du.

(3.1)

Since y
(h)
t =

√
φ(λ

(h)
t )ε

(h)
t , then ε = y√

φ(λ)
=

√
hu, thus

E [q∇ε|F ] =

∫ ∞

−∞

q∇ε 1√
φ(λ)h

f

(
y√
φ(λ)h

)
dy

=
−φ′(λ)

2φ(λ)

√
h

∫ ∞

−∞

[
1 +

g′ (u)

g (u)
u

]
uf (u) du.

(3.2)

Clearly, as h→ 0, (3.1) are O(1) and (3.2) are O(h1/2).

Remark 1. It is evident from (3.1) that the absolute moments E[|q∇|l|F ] are also O(1), thus
l can be extended to R+ when considering the absolute moments.

Remark 2. The proof also shows that E[q∇l|F ] are functions of λ and take the form

E[q∇l|F ] = ml [φ
′(λ)/φ(λ)]

l
, (3.3)

where

ml =
1

(−2)l

∫ ∞

−∞

[
1 +

g′(u)

g(u)
u

]l
f(u)du. (3.4)

which is an l-related constant, if it exists.

2i.e., y denotes y
(h)
t+h,

q∇ denotes q∇(h)
t+h, λ denotes λ

(h)
t+h, ε denotes ε

(h)
t+h, F denotes F (h)

t .
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In the case of g = f , the integral∫ ∞

−∞

[
1 +

f ′(u)

f(u)
u

]
f(u)du =

∫ ∞

−∞
f(u) + uf ′(u)du = 1 + uf(u)

∣∣∞
−∞ − 1 = 0,

so that E[∇|F ] = 0 in the SD model, but it may not hold for many cases where g ̸= f . On
the other hand, the socre can be regarded as the innovation of the time-varying parameter,
which should be “fair” in a certain sense. Therefore, assuming E[q∇|F ] = 0 is a slightly
stronger but reasonable assumption we will employ, while also considering the case where
E[q∇|F ] ̸= 0.

3.1. Quasi score with zero mean

In this part, we assume that f and g are two probability density functions such that
E[q∇|F ] = 0, i.e. the integral

∫∞
−∞[1 + g′(u)

g(u)
u]f(u)du = 0. We need three assumptions to

guarantee that Z
(h)
t converges to a non-degenerate diffusion.

Assumption 1 (Rate of scaling). There exist c, ω, θ ∈ R, α ∈ R\{0} such that h−1ch → c,
h−1ωh → ω, h−1(1− βh) → θ, h−1/2αh → α as h→ 0.

Assumption 2 (Existence of some moments). Let U be a random variable with probability
density f . We assume that

E[U2g′(U)/g(U)] = ρ <∞,

and there exists a δ > 0 such that

E|U |2+δ <∞, E[|q∇|2+δ|F ] <∞.

This implies that the second moment are finite and we assume E(U2) = η > 0, E[(q∇)2|F ] =
γ(λ) > 0.

Assumption 3 (Continuity). There exists a compact set Γ ⊂ R such that S(λ)φ′(λ)/φ(λ)
is continuous on Γ.

Note that we suppose η, α, γ(λ) are all nonzero in assumptions. Because η = 0 implies
that the variance of the innovation is zero, and α = 0 or γ(λ) = 0, as we will see later,
leads to a degenerate SDE, both cases are trivial. In fact, according to representation (3.3),
γ(λ) > 0 is equivalent to the link function φ(·) being strictly monotonic. This condition is
satisfied by common choices such as φ(x) = x or φ(x) = e2x.

Theorem 2. Under assumptions 1,2,3. If 4ηm2−ρ2 > 0 and, there exists a random variable

Z0 with probability measure ν0 such that Z
(h)
0

d→ Z0 as h → 0, then Z
(h)
t =

(
X

(h)
t , λ

(h)
t+h

)
weakly converges to the following Itô SDE’s unique weak solution Zt = (Xt, λt) ∈ R × Γ as
h→ 0: 

dXt = cλtdt+
√
φ(λt)ηdW

(1)
t ,

dλt = (ω − θλt)dt+ αS(λt)
√
γ(λt)dW

(2)
t ,

Cov
[
dW

(1)
t , dW

(2)
t

]
= − ρ

2
√
ηm2

dt,

P(Z0 ∈ B) = ν0(B), for any B ∈ B(R× Γ).

(3.5)
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Where W
(1)
t ,W

(2)
t are two (potentially) correlated standard Brownian motions.

Proof. The main thing we need do is to verify the four conditions in Theorem 5.
Condition 1.(A.1): From (2.5), the increment of Z

(h)
t = (X

(h)
t , λ

(h)
t+h) in unit of time

interval h is given by

X
(h)
t+h −X

(h)
t = chλ

(h)
t+h + y

(h)
t+h = chλ

(h)
t+h +

√
φ(λ

(h)
t+h)ε

(h)
t+h,

λ
(h)
t+2h − λ

(h)
t+h = ωh + (βh − 1)λ

(h)
t+h + αhS(λ

(h)
t+h)

q∇(h)
t+h.

Note that λ
(h)
t+h is F (h)

t -measurable, so we can take it out of the conditional expectation.
Since the fact that innovation y and quasi score q∇ have zero mean in our setting, we have

h−1E
[
X

(h)
t+h −X

(h)
t

∣∣∣F (h)
t

]
= h−1chλ

(h)
t+h,

h−1E
[
λ
(h)
t+2h − λ

(h)
t+h

∣∣∣F (h)
t

]
= h−1ωh − h−1(1− βh)λ

(h)
t+h.

Therefore, for any z = (x, λ) ∈ R× Γ, t ≥ 0, by assumption 1,

bh(z, t) =
1

h

[
chλ

ωh − (1− βh)λ

]
h→0−→

[
cλ

ω − θλ

]
= b(z, t).

Clearly, b(z, t) is continuous and the convergence is uniform.
Condition 1.(A.2): In fact, we don’t need to expand the squared increment completely,

because many terms involving ε
(h)
t+h or q∇(h)

t+h can be dropped when taking the expectation.

Recall that h−1/2ε
(h)
t+h

∣∣F (h)
t

d
= U

d∼ f(·), we have

h−1E
[(
X

(h)
t+h −X

(h)
t

)2∣∣∣∣F (h)
t

]
= h−1E[c2h(λ

(h)
t+h)

2 + (y
(h)
t+h)

2|F (h)
t ]

= h−1c2h(λ
(h)
t+h)

2 + E

[(√
φ(λ

(h)
t+h)h

−1/2ε
(h)
t+h

)2 ∣∣∣∣F (h)
t

]
= h−1c2h(λ

(h)
t+h)

2 + φ(λ
(h)
t+h)η,

h−1E
[(
λ
(h)
t+2h − λ

(h)
t+h

)2∣∣∣∣F (h)
t

]
= h−1E

[
ω2
h + (1− βh)

2(λ
(h)
t+h)

2 + α2
hS

2(λ
(h)
t+h)(

q∇(h)
t+h)

2 − 2ωh(1− βh)λ
(h)
t+h

∣∣F (h)
t

]
= h−1ω2

h + h−1(1− βh)
2(λ

(h)
t+h)

2 + h−1α2
hS

2(λ
(h)
t+h)γ(λ

(h)
t+h)− 2h−1ωh(1− βh)λ

(h)
t+h,

h−1E
[(
X

(h)
t+h −X

(h)
t

)(
λ
(h)
t+2h − λ

(h)
t+h

)∣∣∣F (h)
t

]
= h−1E

[(
chλ

(h)
t+h +

√
φ(λ

(h)
t+h)ε

(h)
t+h

)(
ωh − (1− βh)λ

(h)
t+h + αhS(λ

(h)
t+h)

q∇(h)
t+h

) ∣∣F (h)
t

]
= h−1

[
chωhλ

(h)
t+h − ch(1− βh)(λ

(h)
t+h)

2
]
+ h−1

√
φ(λ

(h)
t+h)αhS(λ

(h)
t+h)E

[
ε
(h)
t+h

q∇(h)
t+h

∣∣F (h)
t

]
.
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Focusing on the last term in the previous equation, and substituting the result of Lemma 1,
we have

h−1

√
φ(λ

(h)
t+h)αhS(λ

(h)
t+h)E

[
ε
(h)
t+h

q∇(h)
t+h

∣∣F (h)
t

]
= h−1

√
φ(λ

(h)
t+h)αhS(λ

(h)
t+h)

−φ′(λ
(h)
t+h)

2φ(λ
(h)
t+h)

√
h

∫ ∞

−∞

[
1 +

g′(u)

g(u)
u

]
uf(u)du

= h−1/2αhS(λ
(h)
t+h)

−φ′(λ
(h)
t+h)

2
√
φ(λ

(h)
t+h)

[∫ ∞

−∞
uf(u)du+

∫ ∞

−∞

u2g′(u)

g(u)
f(u)du

]

= h−1/2αhS(λ
(h)
t+h)

−φ′(λ
(h)
t+h)

2
√
φ(λ

(h)
t+h)

ρ.

According to assumption 1, ch, ωh, 1− βh all converge to zero at the order of h. Terms such
as h−1c2h(λ

(h)
t+h)

2, h−1ω2
h, h

−1(1− βh)
2(λ

(h)
t+h)

2 vanish uniformly on Γ as h→ 0. Therefore, for
any z = (x, λ) ∈ R× Γ, t ≥ 0,

ah(z, t)
h→0−→

 φ(λ)η αS(λ) −φ′(λ)

2
√

φ(λ)
ρ

αS(λ) −φ′(λ)

2
√

φ(λ)
ρ α2S2(λ)γ(λ)

 = a(z, t).

The differentiability of φ(λ) implies its continuity, and combining assumption 3, it can be
obtained S(λ)φ′(λ)/

√
φ(λ) and S2(λ)γ(λ) = m2 [S(λ)φ

′(λ)/φ(λ)]2 are continuous on Γ.
Therefore, a(z, t) is continuous, and clearly {ah(z, t)}h are uniformly equicontinuous, which
guarantee the convergence is uniform.

Condition 1.(A.3): We will utilize the inequality∣∣∣∣ n∑
i=1

ai

∣∣∣∣p ≤ np−1

n∑
i=1

|ai|p, for all ai ∈ R, p ≥ 1,

which can be derived by Jensen inequality with respect to | · |p. By assumption 2, there

exists a δ > 0 such that E|U |2+δ <∞, E[|q∇|2+δ|F ] <∞. Then, for any λ
(h)
t+h ∈ D,

0 ≤h−1E
[∣∣∣X(h)

t+h −X
(h)
t

∣∣∣2+δ
∣∣∣∣F (h)

t

]
= h−1E[|chλ(h)t+h + y

(h)
t+h|

2+δ|F (h)
t ]

≤
21+δ|chλ(h)t+h|2+δ

h
+

21+δ

h
E

[∣∣∣∣h1/2√φ(λ
(h)
t+h)h

−1/2ε
(h)
t+h

∣∣∣∣2+δ ∣∣F (h)
t

]

=
21+δ|chλ(h)t+h|2+δ

h
+ hδ/2|φ(λ(h)t+h)|

1+ δ
2E|U |2+δ −→ 0, as h→ 0.

9



0 ≤h−1E
[∣∣∣λ(h)t+2h − λ

(h)
t+h

∣∣∣2+δ
∣∣∣∣F (h)

t

]
= h−1E

[∣∣∣ωh − (1− βh)λ
(h)
t+h + αhS(λ

(h)
t+h)

q∇(h)
t+h

∣∣∣2+δ ∣∣F (h)
t

]
≤ 31+δ

h

[
|ωh|2+δ +

∣∣∣(1− βh)λ
(h)
t+h

∣∣∣2+δ

+
∣∣∣αhS(λ

(h)
t+h)

∣∣∣2+δ

E
(∣∣∣q∇(h)

t+h

∣∣∣2+δ

|F (h)
t

)]
−→ 0, as h→ 0.

Clearly, (A.3) holds since φ(λ) and S(λ) is continuous.
Condition 2: We assert that such a σ(z, t) exists because a(z, t) is a symmetric positive

definite matrix which admits a Cholesky decomposition. In fact, we observe that φ(λ)η > 0
and the second-order sequential principal minor

α2S2(λ)γ(λ)φ(λ)η − α2S2(λ)
[φ′(λ)]2

4φ(λ)
ρ2

=α2S2(λ)

[
m2

(
φ′(λ)

φ(λ)

)2

φ(λ)η − [φ′(λ)]2

4φ(λ)
ρ2

]

=α2S2(λ)
[φ′(λ)]2

φ(λ)
(m2η −

ρ2

4
) > 0,

Furthermore, we can explicitly calculate a σ(z, t) satisfies the condition. Suppose lower

triangualr matrix σ(z, t) =

[
σ1 0
σ3 σ4

]
, satisfying σ(z, t)σ(z, t)T = a(z, t), i.e.

[
σ2
1 σ1σ3

σ1σ3 σ2
3 + σ2

4

]
=

 φ(λ)η αS(λ) −φ′(λ)

2
√

φ(λ)
ρ

αS(λ) −φ′(λ)

2
√

φ(λ)
ρ α2S2(λ)γ(λ)

 . (3.6)

Then we have

σ1 =
√
φ(λ)η, σ3 = αS(λ)

−φ′(λ)

2φ(λ)
√
η
ρ, σ4 = αS(λ)

φ′(λ)

φ(λ)

√
m2 −

ρ2

4η
. (3.7)

Clearly, such σ(z, t) is a continuous function satisfies condition 2.

Condition 3 is satisfied due to Z
(h)
0

d→ Z0, and we now turn to Condition 4. In fact,
a(z, t) = a(λ), b(z, t) = b(λ) are independent of x, t, thus SDEs (A.4) is an Itô type equation.
As demonstrated in Stroock and Varadhan (1979), an unique weak solution exists for (A.4)
if b(λ), σ(λ), a(λ) are continuous and bounded, and a(λ) is uniformly positive definite. We
are already show that b(λ), σ(λ), a(λ) are continuous on compact set Γ, thus bounded. We
need to prove there exists a ζ > 0 such that for all λ ∈ Γ, a(λ) − ζI is positive definite,
where I unit matrix.

Because φ(λ), S2(λ)γ(λ), [S(λ)φ′(λ)]2/φ(λ) are all positive continuous functions on Γ,
and ηm2 − ρ2/4 > 0, there exist c1, c2,M > 0 such that for all λ ∈ Γ,

φ(λ)η > c1,
[φ′(λ)]2

φ(λ)
α2S2(λ)(ηm2 −

ρ2

4
) > c2, φ(λ)η + α2S2(λ)γ(λ) < M. (3.8)
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Then we have

[φ′(λ)]2

φ(λ)
α2S2(λ)(ηm2 −

ρ2

4
) >

c2
M

[φ(λ)η + α2S2(λ)γ(λ)]

>
c2
M

[φ(λ)η + α2S2(λ)γ(λ)]−
( c2
M

)2
.

(3.9)

Taking ζ = min
{
c1,

c2
M

}
guarantees a(λ)− ζI is definite for all λ ∈ Γ.

According to Theorem 5, the following diffusion process is the continuous-time limit of
QSD volatility models:

dXt = cλtdt+ σ1dB
(1)
t ,

dλt = (ω − θλt)dt+ σ3dB
(1)
t + σ4dB

(2)
t ,

P(Z0 ∈ B) = ν0(B), for any B ∈ B(R× Γ),

(3.10)

where B
(1)
t , B

(2)
t are two independent Brownian motions, and σ1, σ3, σ4 are given by (3.7).

Actually, the noise driving λt is correlated with that driving Xt, so we transform (3.10) into
an equivalent process with a more intuitive form. Since σ2

1 = φ(λt)η, σ
2
3+σ

2
4 = α2S2(λt)γ(λt),

we have
σ1B

(1)
t ∼

√
φ(λt)ηW

(1)
t , σ3B

(1)
t + σ4B

(2)
t ∼ αS(λt)

√
γ(λt)W

(2)
t ,

where W
(1)
t ,W

(2)
t are two standard Brownian motions. Their covariance is given by

Cov
(
W

(1)
t ,W

(2)
t

)
=

Cov
(
σ1B

(1)
t , σ3B

(1)
t + σ4B

(2)
t

)
αS(λt)

√
γ(λt)φ(λt)η

=
σ1σ3Var(B

(1)
t )

αS(λt)
√
γ(λt)φ(λt)η

=
αS(λt)

−φ′(λt)

2
√

φ(λt)
ρt

αS(λt)
√
γ(λt)φ(λt)η

= − φ′(λt)ρt

2φ(λt)
√
ηγ(λt)

= − ρt

2
√
ηm2

.

In summary, as h → 0, Z
(h)
t =

(
X

(h)
t , λ

(h)
t+h

)
weakly converges towards following SDE’s

unique weak solution:

dXt = cλtdt+
√
φ(λt)ηdW

(1)
t ,

dλt = (ω − θλt)dt+ αS(λt)
√
γ(λt)dW

(2)
t ,

Cov
[
dW

(1)
t , dW

(2)
t

]
= − ρ

2
√
ηm2

dt,

P(Z0 ∈ B) = ν0(B), for any B ∈ B(R× Γ).
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We use the word “potentially” in the Theorem 2 because there are some cases will cause
ρ = 0. For example, when g = f ,

ρ = E[U2g′(U)/g(U)] =

∫ ∞

−∞
u2f ′(u)du = u2f

∣∣∞
−∞ − 2

∫ ∞

−∞
uf(u)du = 0.

This indicates that the two Brownian motions are independent, and the continuous-time
limit (3.5) recovers the result of Buccheri et al. (2021) about SD volatility models. Moreover,
it is not difficult to observe that when both f and g are densities of symmetric distributions,
u2 g

′(u)f(u)
g(u)

is an odd function, leading to

ρ =

∫ ∞

−∞
u2
g′(u)f(u)

g(u)
du = 0.

We conculde it as the following corollary:

Corollary 3. The two Brownian motions in (3.5) can be correlated only if the distributions
driving the innovation and computing the score are different, and at least one of which is
asymmetric.

It is worth noting that in the limit of GARCH or more generally SD volatility models, the
transition from a single to two independent sources of randomness is quite surprising. In fact,
the above corollary illustrates that this phenomenon can also arise due to the symmetry of the
distribution, even outside the SD framework, with GARCH lying at the intersection of both.
The QSD volatility model provides a bridge for this transition. Specifically, by adjusting f
and g, the correlation between these two sources of randomness can be modulated, and it is
even possible to revert to a single source of randomness when ρ = 1.

Next, we consider a more genernal case. Note that when calculating the drift term of λt
in the previous proof, the key to the limit

lim
h→0

αhS(λ
(h)
t+h)E[q∇

(h)
t+h|F

(h)
t ]

h
= 0

rests on the fact that E[q∇(h)
t+h|F

(h)
t ] = 0. Otherwise, it will tend to infinity due to αh =

O(h1/2). Therefore, a new scaling form of the QSD volatility model is required when the
quasi-score has a non-zero mean.

3.2. Quasi score with non-zero mean

According to Remark 2, the conditional mean of quasi socre has the form m1φ
′(λ)/φ(λ).

Thus in this part, we consider the case where m1 = µ ̸= 0. To address such cases, we
can extract the mean value from q∇ and incorporate it into the drift term. Specifically, we
rewrite the updating equation for λn as follows:

λn+1 = ω + βλn + αS(λn)
q∇n

= ω +
µαS(λn)φ

′(λn)

φ(λn)
+ βλn + αS(λn)

[
q∇n −

µφ′(λn)

φ(λn)

]
= ω +

µαS(λn)φ
′(λn)

φ(λn)
+ βλn + αS(λn)q̃∇n.
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Relating this to the time interval h, we obtain
X

(h)
kh = X

(h)
(k−1)h + chλ

(h)
kh + y

(h)
kh ,

λ
(h)
(k+1)h = ωh +

µhαhS(λ
(h)
kh )φ

′(λ
(h)
kh )

φ(λ
(h)
kh )

+ βhλ
(h)
kh + αhS(λ

(h)
kh )

q̃∇
(h)

kh ,
(3.11)

and its continuous-time version Z
(h)
t = (X

(h)
t , λ

(h)
t+h) with σ-algebra F (h)

t .

Theorem 4. Under assumptions 1,2,3 and we further assume h−1/2µh → µ, 4η(m2 −µ2)−
ρ2 > 0 and, there exists a random variable Z0 with probability measure ν0 such that Z

(h)
0

d→ Z0

as h→ 0, then Z
(h)
t =

(
X

(h)
t , λ

(h)
t+h

)
weakly converges to the following Itô SDE’s unique weak

solution Zt = (Xt, λt) ∈ R× Γ as h→ 0:

dXt = cλtdt+
√
φ(λt)ηdW

(1)
t ,

dλt =

[
ω − θλt +

αµS(λt)φ
′(λt)

φ(λt)

]
dt+ α

√
m2 − µ2

S(λt)φ
′(λt)

φ(λt)
dW

(2)
t ,

Cov
[
dW

(1)
t , dW

(2)
t

]
= − ρ

2
√
η(m2 − µ2)

dt,

P(Z0 ∈ B) = ν0(B), for any B ∈ B(R× Γ).

(3.12)

Where W
(1)
t ,W

(2)
t are two (potentially) correlated standard Brownian motions.

Proof. It is similar to the proof in the previous part, here we prove briefly. First, it can be
derived from Lemma 1 that

E(q̃∇|F) = 0,

E(q̃∇
2
|F) = (m2 − µ2)

[
φ′(λ)
φ(λ)

]2
,

E(q̃∇ε|F) = E(q∇ε|F).

It is clear that the calculations for Xt are identical to those in the previous case. We proceed
directly to consider the drift and second moment per unit time of λt.

h−1E
[
λ
(h)
t+2h − λ

(h)
t+h

∣∣∣F (h)
t

]
= h−1ωh − h−1(1− βh)λ

(h)
t+h + h−1µhαhS(λ

(h)
kh )φ

′(λ
(h)
kh )

φ(λ
(h)
kh )

−→ ω − θλt +
αµS(λt)φ

′(λt)

φ(λt)
, as h→ 0.

In fact, as h → 0, all terms in the second moment per unit of time vanish except for

[αhS(λ
(h)
t+h)

q̃∇
(h)

t+h]
2, so that

h−1E
[(
λ
(h)
t+2h − λ

(h)
t+h

)2∣∣∣∣F (h)
t

]
−→ α2S2(λt)(m2 − µ2)

[
φ′(λ)

φ(λ)

]2
, as h→ 0.
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Therefore, we have

b(z, t) =

[
cλ

ω − θλt +
αµS(λt)φ′(λt)

φ(λt)

]
,

a(z, t) =

 φ(λ)η αS(λ) −φ′(λ)

2
√

φ(λ)
ρ

αS(λ) −φ′(λ)

2
√

φ(λ)
ρ α2S2(λt)(m2 − µ2)

[
φ′(λ)
φ(λ)

]2
 .

Since there exists a δ > 0 such that

E(|q̃∇|2+δ|F) ≤ 21+δE(|q∇|2+δ|F) + 21+δ

∣∣∣∣µφ′(λn)

φ(λn)

∣∣∣∣2+δ

<∞,

meanwhile, the second-order sequential principal minor

α2S2(λ)
[φ′(λ)]2

φ(λ)
[(m2 − µ2)η − ρ2

4
] > 0.

By the same procedure as in the previous part, it can be shown that remaining conditions
are satisfied.

Finally, we obtain a bivariate diffusion as the weak convergence limit and transform it into
the form driven by two correlated Brownian motions. According to a(z, t), the covariance
between the two new Brownian morions is given by

Cov
(
W

(1)
t ,W

(2)
t

)
=

αS(λ) −φ′(λ)

2
√

φ(λ)
ρt

αS(λ)φ
′(λ)

φ(λ)

√
(m2 − µ2)φ(λt)η

= − ρt

2
√
η(m2 − µ2)

.

Thus, the limit (3.12) is obtained.

Comparing the continuous-time limits (3.5) and (3.12), we find that (3.5) corresponds
exactly to the case of µ = 0 in (3.12). In this sense, (3.12) can also be regarded as an
extension of (3.5).

4. Two examples based on symmetric and asymmetric distributions

In this section, we consider two examples of QSD volatility model: one of which is driven
by Student’s t-distribution (thus encompassing the normal as a limiting case), and another
is driven by skewed Student’s t-distribution of Zhu and Galbraith (2010). As Corollary
3 indicates, correlation arises only in asymmetric cases. Thus, we consider the diffusion
coefficient of continuous-time limit for the former and the correlation coefficient for the
latter.

Here, we focus on the case where φ(x) = x, implying that the conditional variance σ2
t is

treated as the time-varying parameter λt. Alternatively, one can also easily set φ(x) = ex

to model the dynamics of lnσ2
t , just like in the EGARCH-type models.
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4.1. The QSD-T model

When considering the QSD volatility model based on two standardized Student’s t-
distribution with different degrees of freedom v1, v2, we obtain a model called QSD-T,

yn = σnεn, εn
i.i.d.∼ tv1

σ2
n+1 = ω + βσ2

n + ασ2
n

[
(v2 + 1)y2n

(v2 − 2)σ2
n + y2n

− 1

]
.

(4.1)

This model encompasses many common models, such as GARCH, t-GARCH, Beta-t (Harvey
and Chakravarty, 2008), Beta-normal (Banulescu Radu et al., 2018). We list these models
in the Table 1, where the standard normal distribution case corresponds to v1 → ∞ or
v2 → ∞. Recall that we use the density f to drive yn and use the density g to compute q∇
in the context of Section 2.

Table 1: Five QSD models based on Student’s t-distributions

Model f ∼ g ∼ q∇n

GARCH N(0, 1) N(0, 1) 1
2σ2

n
( y

2
n

σ2
n
− 1)

t-GARCH tv N(0, 1) 1
2σ2

n
( y

2
n

σ2
n
− 1)

Beta-t tv tv
1

2σ2
n

[
(v+1)y2n

(v−2)σ2
n+y2n

− 1
]

Beta-normal N(0, 1) tv
1

2σ2
n

[
(v+1)y2n

(v−2)σ2
n+y2n

− 1
]

QSD-T tv1 tv2
1

2σ2
n

[
(v2+1)y2n

(v2−2)σ2
n+y2n

− 1
]

The normalization function of score S(σ2
n) = 2σ4

n, and is proportional to the inverse of the
Fisher information (Buccheri et al., 2021). Therefore, according to (3.12), the continuous-
time limit of (4.1) is3

dXt = σtdW
(1)
t ,

dσ2
t =

[
ω − (θ − 2αµ)σ2

t

]
dt+ 2α

√
m2 − µ2σ2

t dW
(2)
t ,

P(Z0 ∈ B) = ν0(B), for any B ∈ B(R× Γ).

(4.2)

where W (1),W (2) are two independent Brownian motions due to the symmetry of f and g.
We now focus on diffusion coefficient of σ2

t . Both GARCH and Beta-t belong to SD
models so that µ = 0, it can also easily compute µ = 0 for t-GARCH model. And we have

m2 =
1

2
in GARCH model,

m2 =
v − 1

2(v − 4)
in t-GARCH model,

m2 =
v

2(v + 3)
in Beta-t model.

3For brevity, we set c = 0, i.e. Xn =
∑n

i=1 yi.
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It recovers the results of Buccheri et al. (2021). In the last two models, µ ̸= 0 in genernal,
and we can compute m2 − µ2 numerically. We compare the 2

√
m2 − µ2 of both models

when the degrees of freedom change, see Figure 1. In fact, we can recover the Beta-normal
(v1 → ∞), t-GARCH (v2 → ∞), GARCH (v1, v2 → ∞), Beta-t (v1 = v2) models from the
case of QSD-T models in Figure 1(b) . It can be found that there exists k ≈ 4 such that

2 4 6 8 10 12 14
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1

1.1
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(a) Beta-t and Beta-normal models.
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0 0

(b) QSD-T models.

Figure 1: The diffusion coefficients of Beta-t, Beta-normal and QSD-T models in different degrees of freedom.

when v > k, the volatility of volatility of the Beta-normal diffusion is smaller than that
of the Beta-t, it is predictable because the tail of normal density is lighter than t. When
v is small, the volatility of volatility of the Beta-normal diffusion increases rapidly with v,
surpassing that of Beta-t, but remains finite.

4.2. QSD-ST model

When replacing the t-distribution to skew t-distribution in QSD-T model, we obetain
the QST-ST model. The density function of skew t-distribution are given by (Zhu and
Galbraith, 2010)

f(x; ϱ, v) =


K(v)

[
1 + 1

v

(
x
2ϱ

)2]− v+1
2

, x ≤ 0

K(v)

[
1 + 1

v

(
x

2(1−ϱ)

)2]− v+1
2

, x > 0

Where ϱ ∈ (0, 1) is the skewness parameter, ϱ > 1/2 implies f is left-skewed and vice versa
right-skewed, when ϱ = 1/2, it recovers Student’s t-distribution. Let v > 0 is degree of
freedom, and K(v) = Γ((v + 1)/2)/[

√
πvΓ(v/2)]. We first centred and standardized it in

order to serve as the distribution of ε. According to Zhu and Galbraith (2010), the moments
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of ST random variable X are given by

E(Xk) = (2
√
v)k[(−1)kϱk+1 + (1− ϱ)k+1]

Γ(k+1
2
)Γ(v−k

2
)

√
πΓ(v

2
)

,

so that the mean and standard deviation are

b =
2Γ(v−1

2
)

√
πΓ(v

2
)

√
v(1− 2ϱ), a =

[
4v

v − 2
(3ϱ2 − 3ϱ+ 1)− b2

]1/2
. (4.3)

Therefore, the density of ST distribution tv,ϱ we utilize is

f(x) =


aK (v)

[
1 + 1

v

(
ax+b
2ϱ

)2]− v+1
2

, x ≤ −b/a

aK (v)

[
1 + 1

v

(
ax+b
2(1−ϱ)

)2]− v+1
2

, x > −b/a
.

In QSD-ST model, we suppose that f ∼ tv1,ϱ1 and g ∼ tv2,ϱ2 . We denote bi, ai as the case
where (v, ϱ) is replaced by (vi, ϱi) in (4.3), and let ϱ∗i = ϱi1{x≤−bi/ai} + (1 − ϱi)1{x>−bi/ai}.
Then we have the following QSD-ST model:

yn = σnεn, εn
i.i.d.∼ tv1,ϱ1 ,

σ2
n+1 = ω + βσ2

n + ασ2
n

[
a2εn(a2εn + b2)(v2 + 1)

(a2εn + b2)2 + 4v2ϱ∗2
2 − 1

]
.

(4.4)

The continuous-time limit of this model has the same form as (4.2), except that two Brownian
motions have a correlation coefficient with

Cov
[
dW

(1)
t , dW

(2)
t

]
= − ρ

2
√
η(m2 − µ2)

dt. (4.5)

We compute it when v1, v2, ϱ1, ϱ2 change, see Figure 2 and Figure 3.
In Figure 2(a), it can be observed that when εn is left-skewed but g is right-skewed, two

Brownian motions exhibit significant negative correlations for all appropriate v1 and v2. So
it characterizes the leverage effect, aligning with the advantages of the QSD model discussed
in Blasques et al. (2023). Moreover, it can still produce a leverage effect even if g is left-
skewed, which would fail in the discrete-time case. Specifically, when v2 is not too small,
that is the tail of g is not too heavy, it can also characterize the leverage effect. However,
when εn is right-skewed, the right-skewness of g appears to be necessary, and at this point,
the tail of εn should not be too heavy, as shown in Figure 2(c). Finally, when εn is symmetric
as in 2(b), g needs to be right-skewed to characterize the leverage effect, which is consistent
with the empirical results of Blasques et al. (2023) on 400 US stocks. Additionally, when
v1 = v2, it obtain the continuous-time limit of the Beta-st model proposed by Harvey and
Lange (2017) but there is no correlation according to Corollary 3.

We can further discuss the implication of v. By comparing the two figures in Figure 3, it
can be seen that the heavy-tail of εn can significantly produce a leverage effect even when εn
and g are both left-skewed. Conversely, it also exacerbates the inverse leverage effect when
εn and g are both right-skewed.
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(a) Fixed ϱ1 = 2/3, v1 and v2
change in the case of ϱ2 = 1/3,
1/2 and 2/3.

(b) Fixed ϱ1 = 1/2, v1 and v2
change in the case of ϱ2 = 1/3,
1/2 and 2/3.

(c) Fixed ϱ1 = 1/3, v1 and v2
change in the case of ϱ2 = 1/3,
1/2 and 2/3.

Figure 2: The correlation coefficient of QSD-ST models: fixed distribution of εn is left-skewed, symmetric
or right-skewed.

(a) Fixed v1 = 4, ϱ1 and ϱ2 change in
the case of v2 = 4, 8 and 20.

(b) Fixed v1 = 20, ϱ1 and ϱ2 change in
the case of v2 = 4, 8 and 20.

Figure 3: The correlation coefficient of QSD-ST models: fixed distribution of εn is heavy-tailed or light-
tailed.
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5. Approximating correlated volatility diffusions with QSD models

According to the main results, QSD models based on two different asymmetric noises
weakly converge to correlated volatility diffusions under a set of scaling rate conditions,
as outlined in Assumption 1, thus serving as an approximation. A natural application is
that we can estimate and filter the diffusion processes by its counterpart QSD models. The
statistical inference for the latter is standard, and they are easy to estimate using maximum
likelihood estimation (Blasques et al., 2023). This forms the basis of the QAML method,
which has been advocated, e.g., by Barone-Adesi et al. (2005); Fornari and Mele (2006);
Stentoft (2011); Hafner et al. (2017) among others.

In this section, a Monte Carlo experiment is designed to verify its ability to estimate
and filter the correlated volatility diffusions. Specifically, we assume that the DGP is the
following stochastic volatility process:

dXt = σtdW
(1)
t ,

dσ2
t =

(
ω − θσ2

t

)
dt+ κσ2

t dW
(2)
t ,

Cov(dW
(1)
t , dW

(2)
t ) = ρdt.

(5.1)

When ρ = 0, it can be inferenced based on SD models as in Buccheri et al. (2021). How-
ever it fails when ρ ̸= 0, because the two Brownian motion are always independent in the
continuous-time limit of SD model.

We simulate N = 1000 paths of (5.1) using the Euler–Maruyama discretization, with
a time step of ∆t = 1/19656. Although this produces all the data, we can only sample
them at certain frequencies, such as daily, weekly, or monthly, and at higher frequencies
such as hourly or minutely. Therefore, we set the length between successive observations as
s ∈ {6, 12, 78, 390, 1716, 4914} and the time interval as h = s∆t. If the unit of time is years,
this roughly corresponds to taking observations every thirty minutes, one hour, one day, one
week, one month, and one quarter 4 .

In the experiment, the parameters of DGP are chosen as ω = 0.01, θ = 0.2, κ = 2.5, ρ =
−0.5 and QSD-ST model (4.4) are selected to approximate this diffusion. For fixed length
s, we generate s/∆t data points for one path to ensure that the same 19,656 observations
are available for each frequency. We then estimate the parameters of the QSD-ST model
based on these observed samples using the maximum likelihood estimation method,

Θ = {ωh, βh, αh, ϱ1, v1, ϱ2, v2}.

Next, based on the convergence condition and continuous-time limit form (4.2) and (4.5),
the diffusion parameters (ω, θ, κ, ρ) are recovered from Θ. Finally, the volatility is filtered
and compared to the true values generated from (5.1) in the sense of root mean square
error (RMSE). For comparison, we also performed estimation and filtering using GARCH,
t-GARCH, Beta-t, Beta-st and QSD-T models. Table 2 reports the results. For each pa-
rameter, the mean and standard deviation of the estimates over N paths are shown. For

4For example, assuming there are 252 trading days in a year, with 6.5 hours of trading each day.
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models involving only one t-distribution, v = v1, ϱ = ϱ1 are shown in table. Each RMSE is
normalized by the RMSE of the GARCH model.

Table 2: Recovered parameters (ω, θ, κ, ρ), model parameters (ϱi, vi) and filter RMSE

s = 6 s = 12 s = 78 s = 390 s = 1716 s = 4914

ω

QSD-ST

0.0157 0.0146 0.0157 0.0172 0.0174 0.0166
(0.0077) (0.0039) (0.0020) (0.0013) (0.0009) (0.0008)

θ
18.3323 13.5450 6.4293 3.6777 2.1090 1.3149
(1.7952) (1.3330) (0.5097) (0.2322) (0.0963) (0.0533)

κ
2.5890 2.6275 2.7219 2.8291 2.6527 2.2198
(0.1767) (0.1721) (0.1433) (0.1785) (0.1549) (0.1447)

ρ
-0.5229 -0.5240 -0.5253 -0.5162 -0.5153 -0.5113
(0.0126) (0.0114) (0.0100) (0.0112) (0.0105) (0.0146)

ϱ1

QSD-ST 0.5063 0.5094 0.5219 0.5405 0.5656 0.5861
(0.0053) (0.0052) (0.0049) (0.0045) (0.0040) (0.0037)

Beta-st 0.4994 0.5010 0.5078 0.5220 0.5461 0.5678
(0.0056) (0.0055) (0.0049) (0.0044) (0.0039) (0.0036)

v1

QSD-ST 35.7464 25.5205 11.6330 6.7116 4.3703 3.3638
(9.4181) (4.3414) (0.8394) (0.2699) (0.1191) (0.0734)

t-GARCH 7.2876 6.6948 5.3601 6.5505 3.4941 3.0487
(2.6263) (2.2321) (0.9636) (0.2580) (0.1385) (0.0888)

Beta-t 158.8462 125.7032 18.4558 7.3869 4.2986 3.3416
(64.7877) (52.5941) (3.7351) (0.4260) (0.1531) (0.1026)

Beta-st 160.9632 126.3390 18.7387 7.3456 4.2130 3.2232
(59.7821) (56.9696) (4.5420) (0.4198) (0.1454) (0.0959)

QSD-T 22.8392 19.5691 9.7865 6.5384 4.3801 3.4007
(6.9123) (5.3643) (0.4749) (0.2188) (0.1038) (0.0703)

ϱ2
QSD-ST 0.1219 0.1263 0.1494 0.1986 0.2636 0.3289

(0.0098) (0.0092) (0.0096) (0.0114) (0.0112) (0.0155)

v2

QSD-ST 73.3495 68.5080 57.2311 68.6815 64.6205 68.9667
(42.6400) (35.4345) (18.9173) (24.8915) (9.0309) (8.1920)

QSD-T 36.5237 42.5638 255.5882 231.2275 197.3231 170.6124
(13.9576) (17.6468) (18.1998) (15.3321) (13.8647) (17.7997)

RMSE

GARCH 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
QSD-ST 0.4835 0.5251 0.6003 0.6917 0.8679 0.8832
t-GARCH 1.1524 1.1661 1.0748 1.1004 1.1065 0.9974
Beta-t 0.9779 0.7817 0.7794 0.8396 0.9703 0.9517
Beta-st 0.7734 0.8060 0.7589 0.8548 0.9953 0.9303
QSD-T 0.5527 0.6637 0.7704 0.7835 0.8741 0.9050

It can be observed that the QAML estimation is inconsistent, confirming the result of
Wang (2002). But except for θ, the other parameters are close to the true values under any
fixed frequency, and the standard deviation is even smaller at low frequency (large s). We
need to pay special attention to the correlation coefficient ρ, which is closely related to the
parameters (ϱ, v) of two skew t-distributions. It can be seen that the estimation of skewness
parameter ϱ1 > 0.5, and ϱ2 < 0.5, which exactly describes a negative correlation, i.e., the
leverage effect. Additionally, as the frequency decreases, ϱ1 increases, while the degrees of
freedom v1 decreases. It implies that as the likelihood of discrete-time observations of the
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stochastic volatility (5.1) becomes more non-normal and asymmetric with time aggregation,
the QSD-ST model captures the dynamics better through robust left-skewed and fat-tailed
estimates. As the frequency increases, the estimated degrees of freedom gradually increase,
because over short time periods, asset returns can be considered as a Itô integral of constant
volatility, following a normal distribution. It is important to note, however, that unlike the
GARCH model, the score driving the volatility comes from an asymmetric distribution, even
if its tail resembles that of a normal distribution. This is the key to generating negative
correlation.

For the other models, their estimated values of v (t-GARCH, Beta-t, Beta-st, QSD-T)
and ϱ (Beta-st) follow a consistent trend as s increases, with v decreasing and ϱ increasing.
This again verifies the conclusion that asset returns aggregate over time, showing fat-tails
and left-skewness. Notably, the QSD-ST model’s filter achieves the lowest RMSE across
all frequencies, especially at higher frequencies. This is because as the frequency increases,
the QSD-ST model gradually approximates a correlated volatility diffusion, while the other
models do not. This further explains empirical findings of Blasques et al. (2023) from
another perspective: why the QSD-ST model outperforms the SD model when estimating
and filtering empirical data with leverage effects.

6. Conculsion

The SD model closely links the shape of the conditional distribution of innovations to
the design of the updating equation for time-varying parameters, whereas the QSD model
breaks this connection. It directly leads to the emergence of correlation between the two
Brownian motions in its continuous-time limit.

Specifically, we examines the continuous-time limit when the QSD model is used to
describe volatility, and the loss function is chosen as the log-likelihood of another scale
family distribution, extending the continuous-time limit of Buccheri et al. (2021) on the
SD model. We find that the limit is a stochastic volatility diffusion, where two Brownian
motions are correlated. This correlation is closely tied to the two distributions that drive
the innovations and compute the score. When these two distributions are the same (i.e., the
SD model) or both are symmetric, the correlation vanishes.

Through examples of the QSD-T and QSD-ST models, we specifically demonstrate how
the choice of distribution affects key parameters in the diffusion limit, namely the diffusion
coefficient and correlation coefficient. Finally, we employ the QSD model to approximate
correlated volatility diffusion. Experimental results show that although its QAML estimates
are not consistent, it can roughly recover diffusion parameters even with low-frequency data.
The comparison with other models indicates that, with time aggregation, data generated by
correlated volatility diffusion exhibit fat-tails and left-skewness, where the QSD-ST model
provides the best filtering performance.
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Appendix A. Weak convergence of Markov processes to diffusion

Appendix A.1. Set-up

Let {X(h)
kh }k∈N be a Rd-valued discrete-time Markov process, which has a timestamp

of length h ∈ R+. Fkh = σ(X
(h)
kh , X

(h)
(k−1)h, . . . , X

(h)
0 , kh) is its σ-algebra. Let {P (h)

kh }k∈N :

(Rd,B(Rd)) → [0, 1] be the family of one step transition function of {X(h)
kh }k∈N and νh

be a probability measure on (Rd,B(Rd)), denoting the initial distribution of X
(h)
0 . Let

D([0,∞),Rd) be the space of càdlàg functions from [0,∞) to Rd equipped with the Sko-

rokhod topology. Now we construct a continuous-time process X(h) = {X(h)
t }t≥0 taking

values in D([0,∞),Rd) based on {X(h)
kh }k∈N, and let P(h) be its probability measure, satisfy-

ing

P(h)
[
X

(h)
0 ∈ B

]
= νh(B), ∀B ∈ B(Rd),

P(h)
[
X

(h)
(k+1)h ∈ B

∣∣∣Fkh

]
= P

(h)
kh (X

(h)
kh , B),

P(h)
[
X

(h)
t = X

(h)
kh , kh ≤ t < (k + 1)h

]
= 1.

Intuitively, X
(h)
t can be seen as a continuous-time process obtained by extending the values

of X
(h)
kh to the interval [kh, (k + 1)h).

Remark 3. Note that this extension is not linear but rather stepwise, thus X(h) taking
values in D([0,∞),Rd) rather than a smaller space C([0,∞),Rd), the continuous function
space. It resulting in weaker conditions regarding initial values when X(h) weakly converge
in D. Specifically, while linear interpolation necessitates X

(h)
0 = X0 for all h, the latter only

requires X
(h)
0

d→ X0 as h → 0, where “
d→” denotes converges in distribution. For further

details, refer to Ethier and Kurtz (1986).

Here we summarize and distinguish the four processes that have mentioned above, which
simultaneously clarify how we transition from discrete-time models to continuous-time mod-
els:

(i) The discrete-time process (model) Xn we are interested;

(ii) The discrete-time process X
(h)
kh associated with time interval h, and taking values only

at time 0, h, 2h . . .;

(iii) The continuous-time process X
(h)
t constructed based on X

(h)
kh , whose paths are step

functions taking jumps at time 0, h, 2h . . .;

(iv) The continuous-time process Xt, which is the weak convergence limit of X
(h)
t as h→ 0.

We begin with the process Xn, and as the observation interval shrinks, we obtain X
(h)
kh .

Then, we extend it to the continuous-time version X
(h)
t by left endpoint extension. Finally,

we investigate the weak convergence of X
(h)
t as random elements in the space D([0,∞),Rd).
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Appendix A.2. Weak convergence theorem

We present a set of sufficient conditions for the weak convergence of a sequence of Markov
processes X(h), indexed by the time interval h, to a diffusion process X = {Xt}t≥0 as h→ 0.
This result is mainly derived from Stroock and Varadhan (1979) and Nelson (1990). Before
proceeding, we define the following quantity:

bh(x, t) := h−1E
[
X

(h)
t+h −X

(h)
t

∣∣∣X(h)
t = x

]
,

ah(x, t) := h−1E
[(
X

(h)
t+h −X

(h)
t

)(
X

(h)
t+h −X

(h)
t

)T∣∣∣∣X(h)
t = x

]
,

ch,i,δ(x, t) := h−1E
[∣∣∣〈X(h)

t+h −X
(h)
t , ei

〉∣∣∣2+δ
∣∣∣∣X(h)

t = x

]
.

Where, E[·] denotes the expectation corresponding to the probability measure P(h), the
superscript (h) is omitted without causing ambiguity. ⟨·, ·⟩ represents the natural inner
product in Rd, and {e1, e2, . . . , ed} are its unit vectors.

There are four conditions that guarantee the convergence:

Condition 1. There exists a continuous function a(x, t) : Rd × [0,∞) → Md×d, the space
of d × d nonnegative definite symmetric matrices, and a continuous function b(x, t) : Rd ×
[0,∞) → Rd, such that for all R > 0, T > 0,

lim
h→0

sup
∥x∥≤R,t≤T

∥bh(x, t)− b(x, t)∥ = 0, (A.1)

lim
h→0

sup
∥x∥≤R,t≤T

∥ah(x, t)− a(x, t)∥ = 0. (A.2)

Furthermore, there exists a δ > 0, for all R > 0, T > 0, i = 1, 2, . . . , d such that

lim
h→0

sup
∥x∥≤R,t≤T

ch,i,δ(x, t) = 0. (A.3)

Condition 2. There exists a continuous function σ(x, t) : Rd × [0,∞) → Vd×d, the space of
d× d matrices, such that a(x, t) = σ(x, t)σ(x, t)T.

Condition 3. As h→ 0, X
(h)
0

d→ X0, which has the probability measure ν0 on (Rd,B(Rd)).

Condition 4. There exists a unique weak solution to the following SDE defined by b(x, t)
in condition 1, σ(x, t) in condition 2 and initial probability measure ν0 in condition 3:{

dXt = b(Xt, t)dt+ σ(Xt, t)dWt,

P(X0 ∈ B) = ν0(B), for any B ∈ B(Rd),
(A.4)

where Wt is an d-dimensional standard Brownian motion.

Theorem 5 (Nelson, 1990). Under conditions 1–4, X
(h)
t weakly converges to Xt, which is

the unique weak solution of SDE (A.4).
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