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Introduction 

Freshwater is a natural resource that is increasingly stressed, thus motivating research on the 

spatial and temporal patterns of water use in the United States (Lee, Xu, Daystar, Elgowainy, and 

Wang 2019) and coverage in the popular press (e.g., Uncharted Waters Series, New York Times 

2023). Data from the World Resources Institute show that the United States currently faces 

medium-high water stress and is projected to face this level of stress in the future, measured as 

the ratio of demand over renewable water supply (Kuzma, Saccoccia, and Chertock 2023). 

Globally, the United States is a top user of freshwater (Gleick et al. 2014), both in total and per 

capita use. This water is used throughout the U.S. economy, dominated by irrigation and 

thermoelectric uses (DOI-USGS 2023).   

The U.S. Geological Survey’s National Water Information System (NWIS) is a hub for water 

data in the United States and a source for understanding water use (DOI-USGS 2023). Data on 

water use are published in five-year intervals by water use category. The last data release 

comprehensively covering the categories was 2015 and the delay in data publication limits their 

ability to inform current water issues.     

In this paper, we aim to address this gap by producing a U.S. subnational, annual dataset from 

1995-2021 by nine water use categories; a dataset that has not been available previously along 

the same dimensions. This work speaks to several of the key challenges in environmental and 

resource economics put forth by Bretschger and Pittel (2020), but specifically the dynamics of 

the economic-ecological system. In this context, these data may be useful in research 

applications such as annualizing water use estimates linked to U.S. food production (Rehkamp, 

Canning, and Birney 2021), or understanding virtual water flows which have been looked at for 
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the United States (Mubako et al. 2013) and internationally (Han et al. 2023). Furthermore, more 

frequent and recent time series data could inform decisionmakers where and by whom water is 

being used, indicating areas of potential regional stress or scarcity and, thus, appropriate 

management practices.  

The paper is organized as follows. First, we describe background research that informs our work. 

Secondly, we present the data and our methodological approach. We organize our approach in 

three steps: 1) develop regression models to better understand factors that may be correlated with 

water use, 2) forecast annual water use to generate initial estimates, and 3) adjust the forecasts 

with a mathematical programming model to generate final estimates. We then present our results, 

compare the final estimates to other relevant data in the discussion section, and, finally, 

conclude.  

Background 

The U.S. Geological Survey (USGS) provides data on freshwater withdrawals in their eight main 

categories from both groundwater and surface water sources. Table 1 summarizes these data for 

the five most recent years available, aggregated to the national-level. Over time, thermoelectric 

and irrigation are the major water use categories, combined making up over three-fourths of total 

water withdrawals.  
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Table 1 Freshwater withdrawals by USGS water use category, cubic kilometers (km3) per year 

 1995 2000 2005 2010 2015 
Aquaculture 4.49 8.00 12.20 12.35 10.42 
Domestic 4.66 4.94 5.15 4.87 4.49 
Industrial 27.56 25.16 23.31 20.99 19.34 
Irrigation 179.97 191.93 175.94 159.54 162.77 
Livestock 3.15 3.26 2.96 2.75 2.75 
Public Supply 54.89 59.05 60.34 56.60 52.69 
Mining 3.28 3.57 3.14 2.71 2.61 
Thermoelectric 182.39 185.62 197.48 162.88 131.44 
Total 460.38 481.53 480.51 422.70 386.51 

Source: DOI-USGS (2023) and authors’ calculations 

In 2002, the National Research Council (NRC) published an evaluation of the USGS National 

Water-Use Information Program. The NRC’s report documents the history of the water data (i.e., 

data are both estimated and provided by the agencies and parties that USGS works with), 

provides a review, and makes recommendations going forward in their estimation and 

publication.  

Dziegielewski et al. (2002) analyze water use from 1950 to 1995, although the data are more 

extensive between 1985 and 1995. The authors estimate eight structural models with ordinary 

least squares (OLS) using total water withdrawals (fresh plus saline) from each category as 

dependent variables and relevant subsets of water use determinants as independent variables. In 

some cases, log-linear models utilize water-use rates as independent variables to predict per-

capita water withdrawals. 

The analysis in Dziegielewski et al. (2002) uses state-level data on socio-economic, 

demographic, weather, water access rights, labor force, land use, and water source variables, 

some of which are publicly available through federal sources and others are available only by 

purchase such as the price of water or the price of pumping. The results of Dziegielewski et al. 

(2002) document that water demand can be predicted using OLS. The results show that the main 
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drivers of water (i.e., population, employment, irrigated area, and power generation) explain 

most of the variation in per unit water withdrawals in most categories. The outlier analysis 

further demonstrates that state and state-year combinations can also be significant predictors. 

The water-use trends documented in the analysis show increasing aggregate water use in most 

categories for the time period studied, with some leveling off after 1980.  

Brown (2000) and Brown et al. (2013) offer projections of future water withdrawals using 

differing methods. First, they create projections by multiplying total demand units, such as 

population or irrigated acres, by a single per-unit use factor for each category. Growth in each 

demand factor is modelled using an annual rate of change and a rate of change decay. They do 

not model the demand factors or the underlying relationships to withdrawals. 

Using these data and other sources on water, there has been research estimating demand or 

forecasting future use of U.S. freshwater. Climate scenarios are explored in several papers as a 

driver of water demand in the United States (Miller et al. 2021; Warziniack et al. 2021) and 

particularly irrigation demand (Nie et al. 2020), the nation’s largest user of consumptive water 

(Sowby and Dictaldo 2022). Sun et al. (2008) focus on water stress in the Southeastern United 

States and explore the effects of population and land use/land cover, in addition to climate, on 

water availability. Franczyk and Chang (2009) conduct a spatial analysis water for counties in 

Oregon between 1985 to 2005. They conclude that the spatial patterns of total water withdrawals 

across the state are determined, in large part, by climate variability. 

As of the writing of this paper, the USGS published new data and modeling approaches that 

generated the data for selected water use categories (irrigation published October 31, 2023, 

public supply published November 1, 2023, and thermoelectric published October 31, 2023), 
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including data for 2020 and earlier years at an increased frequency (monthly and annually) and 

detail (e.g., power plant level). These data represent a reanalysis of historical water use data 

meaning USGS undertook a “process of reevaluating and recalculating water-use data using 

updated or refined methods, data sources, models, or assumptions” (Galanter 2023). 

USGS’s reanalysis uses different approaches for each category of water withdrawals and predicts 

volumes at the watershed boundary level for 87,020 12-digit hydrologic unit codes (HUC12) in 

the conterminous U.S. over different time periods. For example, public supply volumes are 

predicted using the XGBoost algorithm and ensemble learning methods with socio-economic, 

demographic, and climate variables, as well as variables related to housing characteristics.  

The above literature contributes to our understanding of water withdrawals in the United States 

over time. We build on work that has been done to estimate U.S. freshwater withdrawals 

between 1995-2021. 

Materials and Methods 

This section documents our empirical analysis.  

Data 

This paper uses data from the U.S. Geological Survey’s NWIS (DOI-USGS 2023). We use water 

data for the water use categories, or synonymously, water withdrawal categories: aquaculture, 

domestic, industrial, livestock, mining, public supply, and thermoelectric and water use 

subcategories for irrigation: crop irrigation and golf irrigation. The subnational data (either at the 

county- or state-level) not only account for heterogeneity in water use, but, practically, these data 

also increase our observations compared to using the national data. These data are published 



 

7 
 

every five years and we use data from 1995 to 2015, as 2015 is the most recent year of 

comprehensive data published. These data are our dependent variables. 

To maintain transparency and reproducibility, we exclusively use publicly available data. Data 

choices were limited to where we had annual, subnational data over time. The data sources we 

chose for the regressors in each model are presented in Table 2. Transformations to the data 

inputs are described below.  

The Quarterly Census for Employment and Wages (QCEW) is a rich dataset that is available 

along the dimensions of our analysis, but there are data suppressions for employment, especially 

at narrower North American Industry Classification System (NAICS) levels or geographies. 

However, the QCEW establishment data are complete. For mining, we record the data source as 

eQCEW, indicating that these employment data are enhanced to estimate the suppressions that 

exist even at the 2-digit NAICS level for states. There are suppressions in four states (Alaska, 

Delaware, Maine, and Rhode Island) and we estimate these suppressions by taking the average of 

the two “bookend” values, so the datapoints for the year before and after the suppression.   

Net electricity generation by thermoelectric fuel source data are derived from DOE-EIA (2023). 

The thermoelectric fuel sources included are coal, geothermal, nuclear, other, other biomass, 

other gases, petroleum, solar thermal/photovoltaic, wood/wood-derived fuels. 

Since the regional, real gross domestic product (GDP) data are NAICS-based, we impute the data 

for 1995 and 1996 where the data are based on the Standard Industrial Classification (SIC) 

system. We multiply the real GDP in chained 2012 dollars in 1997 by a quantity index for 1995 

and 1996 when using real GDP of industrial-classified industries.  
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The population variable, Pop, is computed in two steps. First, using the USGS data on 

population served by public supply and total population, a percent of population served is 

computed for every five-year epoch. Next, this percentage is applied to the Census estimate of 

intercensal population for each of the four years following the reference year (see DOC-USCB 

references for each year of data). For example, the 1995 percentage as computed from the 1995 

USGS data is applied to the Census estimates of population for the years 1996–1999. This is 

repeated for each five-year epoch in the data. 
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Table 2 Data Sources Summary Table 

Notes: All variables are annual and the years of data used for the x-variables are 1995, 2000, 

2005, 2010, and 2015 for the regression analysis, corresponding with the water data available 

from USGS that are used as dependent variables. The years of data used for the independent 

Regression Geographical 
level 

Variable (unit) Variable 
in 
equations 
below 

Source 

Aquaculture State None   
Domestic State None   
Irrigation – Crop State 

(excluding 
Hawaii) 

Temperature (average 
degrees Celsius)  

temp NOAA 
(2023) 

  Precipitation 
(millimeters) 

precip NOAA 
(2023) 

Irrigation – Golf State Establishments (number 
by NAICS 713910) 

estab BLS-QCEW 
(2023) 

  Employees (number by 
NAICS 713910) 

emp BLS-QCEW 
(2023) 

Industrial  Regional real GDP for 
industrial industries 
(NAICS 23- and 3-; 
millions of chained 2012 
dollars)  

GDP BEA (2023) 

Livestock State Cattle inventory  cattle USDA-
NASS (2022)  

 State Establishments (number 
by NAICS 112-, 
excluding 1125-) 

estab BLS-QCEW 
(2023) 

Mining State Employees (number by 
NAICS 21-) 

emp BLS-eQCEW 
(2023) 

Public Supply County Population served by 
public supply sources 

pop Census 
Bureau and 
authors’ 
calculations 

Thermoelectric State Net electricity 
generation by 
thermoelectric fuel 
source (MWh/year) 

elec DOE-EIA 
(2023) 

  Precipitation 
(millimeters) 

precip NOAA 
(2023) 

All State or county Water withdrawals 
(cubic kilometers) 

Left-hand 
side 
variables 

USGS (2023) 
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variables are 1995 through 2021 for the forecasting. Temperature and precipitation were 

converted from their original units of average degrees Fahrenheit and inches, respectively, to 

average degrees Celsius and millimeters (mm). Water withdrawals were converted from their 

original units of million gallons per day to cubic kilometers per year.  

Methodological steps 

We summarize our methodological steps below:  

1. We first estimate regressions for each of the water use categories where freshwater 

withdrawal is the dependent variable. For each regression, we tried several model 

specifications. The chosen model specification for each water use category is presented in 

the section below.  

2. Once the regressions are estimated, we developed forecasts using annual data between 

1995 and 2021 for each water use category which we call initial estimates. 

3. We then adjust the forecasts using a mathematical programming model for final estimates 

by water use category. 

Step 1: Regression analysis 

To develop the nine regression specifications presented below, we experimented with many 

variables and data scales following the framework for estimating water use in the United States 

outlined in the 2002 NRC publication. We also consider and build on what others have done in 

the literature (Dziegielewski et al. 2002; Franczyk and Chang 2009; Nie et al. 2020; Warziniack 

2022).  

We used OLS regressions for ease of interpretation of the results and generally level variables 

for ease of forecasting, rather than a per capita ratio as others have used (Dziegielewski et al. 
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2002; Warziniack 2022). For each regression, we included different variables and functional 

forms based on economic significance, choosing the models we determined generated the best 

results based on review of the statical significance and forecast reliability.  

We generally tried precipitation and temperature data in the regressions, operating under the 

supposition that weather affects withdrawal rates. We also tried to include employment, 

establishment, or real GDP to get at the size of the industry over time, or similarly population for 

the public supply model. The expectation is that the bigger the industry, the more water used. 

Because establishment sizes can vary, employment or real GDP may be a better measure to 

capture this, although the employment data are peppered with suppressions while the 

establishment data are not (BLS-QCEW, 2023).   

In all of the following model specifications,  

c is a subscript for county (n = 3139 where c = {1, …, 3139} representing all U.S. 

counties) 

s is a subscript for state (n=50 where s = {1,…,50} representing U.S. states) 

t is a subscript for year (n=27 where t = {1,…,27} representing years 1995-2021) 

year is a time trend 

D represents state dummy variables 

In all of the models presented below, we include a linear time trend to capture the relationship 

between water withdrawals and time. We also include state indicators to account for within-state 

heterogeneity that is unobservable and constant over time, using Alabama as the base 
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(Dziegielewski et al. 2002; Suits 1984). The other variables included and their data sources are 

defined in Table 2.   

Equation 1 Regression model specification for aquaculture freshwater withdrawals 

aquaculture𝑠𝑠,𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 +  𝛾𝛾𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦2 + �𝛿𝛿𝑠𝑠 𝐷𝐷𝑠𝑠 + 𝜀𝜀𝑠𝑠,𝑡𝑡 

Aquaculture data were sparse along the dimensions needed for forecasting, so the only variables 

we included in this regression were dummy variables for the states and time trends. We tried 

other data such as the employment or establishment data, but we would have had an unbalanced 

panel due to the growth of this industry over the time period of analysis. 

Equation 2 Regression model specification for domestic self-supplied freshwater withdrawals 

domestic𝑠𝑠,𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 + 𝛾𝛾𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦2 + �𝛿𝛿𝑠𝑠𝐷𝐷𝑠𝑠 + �𝜆𝜆𝑠𝑠(𝐷𝐷𝑠𝑠 ∗ 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦) + �𝜃𝜃𝑠𝑠(𝐷𝐷𝑠𝑠 ∗ 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦2) + 𝜀𝜀𝑠𝑠,𝑡𝑡 

Following Dziegielewski et al. (2002), we used state dummies and linear time trends, along with 

a quadratic trend to capture the curvature observed in the USGS data. 

Equation 3 Regression model specification for crop irrigation freshwater withdrawals 

irrigation_crop𝑠𝑠,𝑡𝑡 = 𝛼𝛼 +  𝛽𝛽𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠,𝑡𝑡 +  𝛾𝛾𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠,𝑡𝑡 +  𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿 + �𝜆𝜆𝑠𝑠 𝐷𝐷𝑠𝑠 + �𝜃𝜃𝑠𝑠 (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠,𝑡𝑡 ∗ 𝐷𝐷𝑠𝑠) + 𝜀𝜀𝑠𝑠,𝑡𝑡 

Weather variables precipitation and temperature were included and precipitation was also 

interacted with the state dummy variables. There are 245 observations in this regression instead 

of 250 (50 states by five years); there are no precipitation data for Hawaii (NOAA 2023). 

Equation 4 Regression model specification for golf irrigation freshwater withdrawals 

irrigation_golf𝑠𝑠,𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠,𝑡𝑡 + 𝛾𝛾𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠,𝑡𝑡 + 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿 +  𝜆𝜆𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦2 + �𝜃𝜃𝑠𝑠 𝐷𝐷𝑠𝑠 + 𝜀𝜀𝑠𝑠,𝑡𝑡 
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We used establishments and employment for NAICS 713910: golf courses and country clubs to 

represent to represent the size of the industry over time. There are 245 observations in this 

regression instead of 250 (50 states by five years); there are no precipitation data for Hawaii 

(NOAA 2023). 

Equation 5 Regression model specification for industrial freshwater withdrawals 

industrial𝑠𝑠,𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽𝐺𝐺𝐺𝐺𝐺𝐺𝑠𝑠,𝑡𝑡 + 𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾 + �𝛿𝛿𝑠𝑠 𝐷𝐷𝑠𝑠 +  �𝜆𝜆𝑠𝑠 (𝐺𝐺𝐺𝐺𝐺𝐺𝑠𝑠,𝑡𝑡 ∗ 𝐷𝐷𝑠𝑠) + 𝜀𝜀𝑠𝑠,𝑡𝑡 

We used regional real GDP to represent the size of the industrial-classified industries over time: 

NAICS that begin with 23 (construction) and 3 (manufacturing).  

Equation 6 Regression model specification for livestock freshwater withdrawals 

livestock𝑠𝑠,𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠,𝑡𝑡 + 𝛾𝛾𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠,𝑡𝑡 + 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿 + �𝜆𝜆𝑠𝑠 𝐷𝐷𝑠𝑠 + 𝜀𝜀𝑠𝑠,𝑡𝑡 

We used cattle inventory from the NASS surveys. Other livestock inventory was tried, but had 

incompatible datasets (i.e., grouping states with lower inventories together) and cattle have the 

highest water intake rate (Lovelace 2009). We were also able to use establishments for NAICS 

beginning with 112 (animal production and aquaculture), but removed the data associated with 

NAICS 1125 (aquaculture) since these water withdrawals are reported in the aquaculture water 

use category.  

Equation 7 Regression model specification for mining freshwater withdrawals 

mining𝑠𝑠,𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠,𝑡𝑡 + 𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾 + �𝛿𝛿𝑠𝑠 𝐷𝐷𝑠𝑠  + �𝜆𝜆𝑠𝑠  (𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠,𝑡𝑡 ∗ 𝐷𝐷𝑠𝑠) + �𝜃𝜃𝑠𝑠 (𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 ∗ 𝐷𝐷𝑠𝑠) + 𝜀𝜀𝑠𝑠,𝑡𝑡 
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We used employees for NAICS 21 (mining) and also employees interacted with the state dummy 

variables in this regression. Additionally, we interacted the time trend and the state dummy 

variables.  

Equation 8 Regression model specification for public supply freshwater withdrawals 

supply𝑐𝑐,𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐,𝑡𝑡 + 𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾 + 𝛿𝛿𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦2 + �𝜆𝜆𝑠𝑠𝐷𝐷𝑠𝑠 + 𝜃𝜃(𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐,𝑡𝑡 ∗ 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦) +  𝜇𝜇(𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐,𝑡𝑡 ∗ 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦2) + 𝜀𝜀𝑐𝑐,𝑡𝑡 

We estimated models using county-level data where possible to reduce RMSE and capture local 

water-use characteristics (Dziegielewski et al. 2002), and this was achievable in the public 

supply model.  

Equation 9 Regression model specification for thermoelectric freshwater withdrawals 

thermoelectric𝑠𝑠,𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠,𝑡𝑡 +  𝛾𝛾𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠,𝑡𝑡 + 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿 + �𝜃𝜃𝑠𝑠 (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠,𝑡𝑡 ∗  𝐷𝐷𝑠𝑠) + 𝜀𝜀𝑠𝑠,𝑡𝑡 

Here, we used the net electricity generation by thermoelectric fuel sources, precipitation, and net 

electricity interacted with the state dummy variables. There are 244 observations in this 

regression instead of 250 (50 states by five years); there are no precipitation data for Hawaii 

(NOAA 2023) and there is an N/A value for thermoelectric𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,1995. 

Step 2: Forecasts (initial estimates) 

In the second step of our analysis, we predict the y-variables at the subnational level. The 

predictions rely on our estimated coefficients (Table 3) and on annual data between 1995 and 

2021 for the same x-variables used to fit the models described above.  
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Step 3: Mathematical programming (final estimates) 

Upon inspection of our prediction results, there were cases when the predicted values were 

negative or did not predict the published USGS data exactly. Since negative results are 

nonsensical in this context and we wanted to ensure the integrity of the published data, we used a 

nonlinear programming model with linear constraints that: 1) enforce the benchmark year 

estimates to the USGS data, and 2) enforce all the estimates to be greater than zero. The 

objective function is a least squares problem where we minimize the adjustments to year-over-

year percentage change estimates from the first stage regressions and the posteriors are scaled by 

a ratio of the priors (i.e., our initial year-over-year-change from the regression forecasts).  

Equation 10 Mathematical programming model specification for final estimates 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 � �
𝑤𝑤1𝑔𝑔,𝑡𝑡2 −  𝑤𝑤1𝑔𝑔,𝑡𝑡1 × 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟0

𝑤𝑤1𝑔𝑔,𝑡𝑡1
�
2

𝑔𝑔,𝑡𝑡1,𝑡𝑡2

= � �
𝑤𝑤1𝑔𝑔,𝑡𝑡2

𝑤𝑤1𝑔𝑔,𝑡𝑡1
− 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟0�

2

𝑔𝑔,𝑡𝑡1,𝑡𝑡2

 

subject to  𝑤𝑤1𝑔𝑔,𝑡𝑡 = 𝑤𝑤𝑔𝑔,𝑡𝑡 ∀ t∈B and 𝑤𝑤1𝑔𝑔,𝑡𝑡 ≥ 1 

where the subscripts g represents the geography, t represents the year = {1995,…,2021}, and t1 

and t2 represent sequential years.  

Then, w0 represents the prior estimates, w1 are the posterior estimates, w are the published data, 

ratio0 = 𝑤𝑤0𝑔𝑔,𝑡𝑡2

𝑤𝑤0𝑔𝑔,𝑡𝑡1
, and B = the benchmark years of water data = {1995, 2000, 2005, 2010, 2015}.  

This step was done using GAMS (General Algebraic Modeling Software) and using the 

CONOPT3 solver given the nonlinearities. We ran this same model at the state-level for each of 

the water use categories, aggregating the initial estimates at the county-level from public supply 
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model. We also ran these models in the water data’s source unit of million gallons (Mgal) and 

then converted the final results to cubic kilometers. 

The result of using the mathematical programming is to adjust our initial estimates so that, when 

there are discrepancies between our forecasts and the published USGS data, our final estimates 

match the published data in the benchmark years and are greater than zero in all years while 

minimizing the change between our initial estimates in subsequent years. 

Results 

Table 3 shows the coefficient estimates for the primary predictor variables for each of the 

regressions. Robust standard errors were used and reflected in the confidence intervals.  

Table 3 Regressions summary  
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Statistics on the predictions (initial estimates from step 2) for each water use category are 

presented in Table 4. We generate the root mean square error (RMSE) and mean absolute 

percentage error (MAPE) to evaluate accuracy.   

Table 4 Statistics on the predictions for each water use category 

 Root mean square error 
(RMSE) 

Mean absolute percentage 
error (MAPE) 

Aquaculture 0.1578 0.86 
Domestic 0.0194 1.00 
Irrigation – Crop 0.8727 1.23 
Irrigation – Golf 0.0145 0.70 
Industrial 0.1269 0.63 
Livestock 0.0176 0.62 
Mining 0.0232 0.35 
Public Supply 0.035 0.98 
Thermoelectric 2448.6338 0.88 

 

The prediction results (initial estimates from step 2) and the mathematical programming results 

(final estimates from step 3) are shown below in Fig. 1. for all water use categories. Although we 

generate subnational estimates, we present the results at the national level for conciseness. To 

present the predicted results at the national level, we appropriately adjust the prediction intervals 

of the state-level results. This adjustment is made by using the estimated coefficients from the 

models presented to generate predictions, then adjusting the variance of the predictions with the 

residuals from the estimated model. This adjusted variance is then used to generate a t-

distribution for computing new prediction intervals around the aggregate (i.e., national) water 

withdrawals for each model. 
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Fig. 1 National initial and final estimates by water use category, 1995-2021 

 

Source: Authors’ calculations 

Discussion 

To evaluate our estimates of crop irrigation water withdrawals, we compare our estimates to 

published data on water applied from the Census of Agriculture’s follow-along survey, the 

Irrigation Water Management Survey (USDA-NASS 2019b), previously called the Farm and 

Ranch Irrigation Survey (FRIS) in earlier years (USDA-NASS 2004; USDA-NASS 2014). Water 

withdrawals are expectedly higher than water applied in each year due to conveyance loss and 

other factors. Looking at the trends for each series, estimated withdrawals follow applications 
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between 1998-2003 and 2013-2018, but not in 2003-2008 and 2008-2013; this may not be a 

discrepancy as things such as technology or reductions in loss may contribute to the differences 

in applications versus withdrawals.  

Fig. 2 Comparison between published water applied and estimated water withdrawn in the 

United States 

 

Sources: Authors’ estimates for water withdrawn; USDA-NASS 2019b, USDA-NASS (2004), 

and USDA-NASS (2014) for water applied. 

Next, in Fig. 3., we compare our estimates which overlap with the USGS original data published 

by NWIS and the recently published USGS reanalysis of water use data for three water use 

categories using updated methods. 
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Fig. 3 Comparison between estimated water withdrawals, USGS original data, and USGS 

reanalysis for three water use categories 

 

Source: Authors’ estimates; DOI-USGS, 2023 for USGS original data; Galanter (2023), 

Luukkonen et al. (2023), and Martin et al. (2023) for USGS reanalysis. 

Notes. The USGS original data are the data published in 5-year intervals and exactly match our 

estimated values due to model construction. The estimated series for irrigation freshwater 

comparison in the first panel are a sum of our estimated crop and golf irrigation estimates since 

there was not a breakout in the USGS reanalysis. The thermoelectric withdrawals in the third 
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panel are based on the USGS data with the once-through saline cooling type removed. There was 

no indication of water type (freshwater or saline water) for the other cooling types.  

Data were aggregated to the national-level from their respective geographic scales for 

comparison in Fig. 3, but the comparisons are not apples-to-apples. First, the USGS reanalysis of 

irrigation data represent consumptive use, not withdrawals as the original USGS data and our 

estimates do. Also, these data are an abbreviated time horizon (irrigation 2000-2020; public 

supply 2000-2020; thermoelectric 2008-2020) compared to the original USGS data. Although 

there is a difference in magnitude between the new USGS series and our estimates, they follow 

similar trends. 

Our estimate of thermoelectric freshwater water withdrawals in 2008 is 160 km3. In Averyt et al. 

(2013), the median estimate thermoelectric water withdrawals in 194 km3 (converted from the 

billion gallons reported) and the authors report that 86 percent of these withdrawals were from 

freshwater sources. Applying the 86 percent to 194 km3, the resulting 168 km3 withdrawals is 

quite close to our estimate.  

There are three notable spikes in our mining water estimates (Fig. 1, panel g) in 1999, 2002, and 

2014 that are an artifact of our mathematical programming model. Because we match the USGS 

estimates, but also maintain the year-over-year change from the initial estimates, these cases 

result in knowingly unrealistic estimates that drive the spikes. For example, the initial estimates 

of water withdrawals in West Virigina were quite small in 1995 (only 745,559 cubic 

meters/year), so when the model adjusted this to the actual volume of withdrawals in 1995 from 

the USGS data (18,516,225 cubic meters/year) and applied ratio0, the following for estimates 

before the next benchmark year (1996, 1997, 1998, 1999) are much higher than what they 

reasonably were. Beyond 2000, the series smooths out for the state’s estimates. We accept this 
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model byproduct because it happens in few cases and mining water use in minor compared to the 

other primary categories (Fig. 1). As a future improvement, we could consider adjusting model 

constraints such as imposing a limit on the magnitude of change from the benchmark years.  

A limitation of our analysis presented in this paper is data availability for the right-hand side 

variables. The price of water for relevant categories (e.g., public supply) was not publicly 

available for the dimensions that we would need for our analysis but could potentially add 

explanatory power. Aquaculture was a particularly difficult water use category to find data on for 

our entire time period; there were many zeros when looking at potential variables in the 1990s. 

Another example is the scale of the irrigated crop water regression; certainly state-level, annual 

averages obscure weather variations at a local scale and variations within a shorter time interval.  

We recognize the challenges and acknowledge the limitations of using a regression approach that 

are presented by the NRC (2002). There are complex relationships that are not captured or 

perhaps incorrectly captured (e.g., a time trend actually capturing the effects of a policy change 

instead of technological progress, explanatory variables that are a function of water use 

themselves). For example, Chen et al. (2013) show the decreasing freshwater withdrawals per 

unit of electricity generated over time, due to newer thermoelectric plants and shifts towards 

different cooling systems.  

We use water defined by political geographical boundaries as USGS publishes the data and to 

correspond with the other variables used in the regression analysis. Also, data defined by 

geographical boundaries may facilitate a broader set of future research applications. However, 

geographical units defined by hydrological unit code (HUC) may more accurately capture the 

physical attributes of water resources.  
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Future work may consider ways to better capture the changes that occur over time influencing 

water use such as structural shifts in the economy, water efficiency improvements, and 

population growth or movement.  

Conclusion 

Estimating water use is difficult work with complex underlying relationships. This work aims to 

better understand the drivers of water use and create a useful time series for research 

applications. We develop regression estimates, forecasts, and mathematical programming models 

to generate U.S. subnational estimates for nine water use categories between 1995-2021 while 

maintaining the integrity of the benchmark water use data published by USGS. Having annual 

data on freshwater withdrawals in the United States may help facilitate time series analysis that 

previously was not possible with the USGS data in five-year intervals and brings forward dated 

resource data. These data may inform where and by whom water is being used to identify regions 

of relative stress or scarcity and, thus, appropriate management practices.  
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