Weighted automata define a hierarchy of terminating string rewriting systems
Abstract
The "matrix method" (Hofbauer and Waldmann 2006) proves termination of string rewriting via linear monotone interpretation into the domain of vectors over suitable semirings. Equivalently, such an interpretation is given by a weighted finite automaton. This is a general method that has as parameters the choice of the semiring and the dimension of the matrices (equivalently, the number of states of the automaton). We consider the semirings of nonnegative integers, rationals, algebraic numbers, and reals; with the standard operations and ordering. Monotone interpretations also allow to prove relative termination, which can be used for termination proofs that consist of several steps. The number of steps gives another hierarchy parameter. We formally define the hierarchy and we prove that it is infinite in both directions (dimension and steps).Downloads
Download data is not yet available.
Published
2009-01-01
How to Cite
Gebhardt, A., & Waldmann, J. (2009). Weighted automata define a hierarchy of terminating string rewriting systems. Acta Cybernetica, 19(2), 295-312. Retrieved from https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/3770
Issue
Section
Regular articles