[go: up one dir, main page]

Zlomek

podíl dvou výrazů
Tento článek je o matematice. O hmotnostním, objemovém a molárním zlomku pojednává článek Koncentrace (chemie).

Zlomek (či lomený výraz) označuje v matematice podíl dvou výrazů (tj. zlomek naznačuje dělení). Zlomek obsahuje zlomkovou čáru, nad kterou je čitatel a pod ní je jmenovatel. Jakékoliv racionální číslo lze napsat jako zlomek, jehož čitatel i jmenovatel jsou celá čísla. Zápis pomocí zlomků je vhodný pro provádění elementárních úprav složitějších výrazů. Zlomky jsou běžně využívány v hovorové řeči (polovina, čtvrtka, dvě pětiny apod.) a starší označení pro různá množství bylo voleno tak, aby mohlo být dále děleno (např. tucet, mandel, kopa apod.), tj. aby mohly být používány jejich zlomkové části.

Grafické znázornění zlomků se jmenovatelem 4.

Hlavní pojmy

editovat

Každý zápis zlomku je založen na části celku (například polovina jako 12, tři čtvrtiny jako 34, dvě třetiny jako 23).

Zlomek se zapisuje ve tvaru   nebo ab. Výraz   označujeme jako čitatel (nad zlomkovou čárou) a výraz   označujeme jako jmenovatel (pod zlomkovou čárou). Aby měl zlomek smysl, nesmí být jmenovatel roven nule (v oboru reálných čísel nelze dělit nulou).

Pokud jsou v čitateli i ve jmenovateli zlomku další zlomky (např.  ), pak takový jej označujeme jako složený zlomek.

Pokud je čitatel menší než jmenovatel (zlomek je menší než jedna) označujeme tento zlomek jako pravý zlomek. Nepravý zlomek je větší než jedna a lze ho převést na smíšené číslo (například 54 = 1+14).

Smíšené číslo se skládá z celého čísla a pravého zlomku, například jeden a půl lze zapsat jako 1+12.

Počítání se zlomky

editovat
Související informace naleznete také v článku Usměrňování zlomku.

Zlomky se dají sčítat, odčítat, násobit a dělit, dokonce i umocňovat. Chceme-li vynásobit dva zlomky, vynásobíme mezi sebou oba čitatele a oba jmenovatele. Součin čitatelům napíšeme nad zlomkovou čáru a součin jmenovatelů pod ní.

Abychom mohli sečíst nebo odečíst dva zlomky, musí mít stejného jmenovatele (například 12 + 32 = 42 = 2). V případě nutnosti lze jeden nebo oba zlomky převést na společného jmenovatele (12 + 13 = 36 + 26 = 56).

Pravidla

editovat
 
 

Pokud navíc  , pak

 
 
 

Dva zlomky   a   mají stejnou hodnotu tehdy a jen tehdy, když   (tzn. jejich podíl je 1).

Pokud máme zlomek  , přičemž čitatel lze vyjádřit jako   a jmenovatel jako   (tedy   ), pak lze zlomek   vyjádřit v ekvivalentním tvaru jako

 

Tento postup je označován jako krácení zlomku. Hodnoty obou zlomků jsou ekvivalentní a lze je libovolně zaměňovat. Platí tedy např.  . Je vidět, že vzájemně ekvivalentních zlomků existuje nekonečné množství, např.   pro libovolné přirozené číslo n. O zlomku řekneme, že je v základním tvaru, pokud jeho čitatel a jmenovatel nemají žádného společného dělitele - tento tvar je naopak pro každou třídu zlomků o stejné hodnotě jedinečný.

Podaří-li se zkrátit zlomek na tvar  , pak jej pokládáme roven přímo číslu n, tzn.  . Např.  .

Při provádění složitějších operací na zlomky se zlomek ab chová jako  , takže například:

 

Lomené výrazy

editovat

Smysl lomených výrazů (podmínky)

editovat

Lomené výrazy jsou výrazy zapsané ve tvaru zlomku a pracujeme s nimi podobně jako se zlomky. Žádný jmenovatel žádného zlomku nesmí být roven nule, musíme tedy u lomených výrazů vžy určit, kdy mají smysl(určit podmínky).

př. Určete, kdy má výraz   smysl.

Výraz má smysl, pokud jmenovatel zlomku není roven 0. Tudíž  

Krácení lomených výrazů

editovat

Lomené výrazy, stejně jako zlomky, můžeme krátit. Krátit lomený výraz znamená dělit čitatele i jmenovatele stejným výrazem.

př. Zkraťte lomený výraz.  

1) Musíme určit, kdy má daný výraz smysl. Výraz má smysl, pokud   a to je pro  

Můžeme krátit

  = (abychom mohli čitatele i jmenovatele krátit, musíme čitatel upravit na součin:) =   = (můžeme zkrátit výrazem 3(x-y)=  

Tudíž   , pro  

Rozšiřování lomených výrazů

editovat

Rozšířit lomený výraz znamená vynásobit jeho čitatele a jmenovatele týmž výrazem (různým od nuly). Rozšiřování užíváme též při převádění lomeného výrazu na společného jmenovatele.


př. Rozšiřte lomený výraz   výrazem  

Nejprve určíme podmínky lomeného výrazu:  

Rozšíříme:

 


př. Rozšiřte lomený výraz   na lomený výraz se jmenovatelem  

Nejprve určíme podmínky lomeného výrazu:  

Pokud výraz   rozložíme podle vzorce   na výraz   , vidíme, že daný lomený výraz stačí rozšířit výrazem  


 

Usměrňování lomených výrazů

editovat

Usměrnit daný lomený výraz znamená upravit ho rozšířením tak, aby již ve jmenovateli nevystupoval výraz, který může nabývat iracionálních či komplexních hodnot.

Příklady

(U, V, W značí výrazy)

  • odstranění k-té odmocniny ze jmenovatele – lomený výraz se rozšíří (k-1). mocninou jmenovatele:
 
  • odstranění druhé odmocniny z dvojčlenného jmenovatele – lomený výraz se rozšíří dvojčlenem s opačným znaménkem u odmocniny:
 
  • odstranění komplexního výrazu ze jmenovatele – lomený výraz se rozšíří komplexně sdruženým číslem:
 

Jiné vyjádření zlomků

editovat

V desetinném zápise se zlomky vyjadřují jako desetiny, setiny, tisíciny apod. (například 12 = 0,5). Některé zlomky nelze vyjádřit konečným desetinným rozvojem, ale protože se jedná o racionální čísla, jejich rozvoj je od určitého desetinného místa periodický, tedy určitá skupina číslic (zvaná perioda) se neustále opakuje. Pro zjednodušení zápisu lze použít pro periodické opakování číslic na dalších desetinných místech symbol pruhu nad periodou, např.: 0,1167 = 0,116767676767...

Zlomek lze také převést na procentuální podíl z celku (například 12 = 50 %).

Zlomek Procenta Desetinné číslo
1/2 50 % 0,5
1/3 33,33 % 0,33
1/4 25 % 0,25
1/5 20 % 0,2
1/6 16,66 % 0,166
1/8 12,5 % 0,125
1/10 10,0 % 0,1
1/100 1 % 0,01
2/3 66,66 % 0,66
3/4 75 % 0,75
3/5 60% 0,6

Platí (přesně!):

 

(obojí je totiž zápis čísla  ).

Převod mezi různými druhy zápisu

editovat
  • Převod z tvaru zlomku do tvaru desetinného zápisu: Provede se zlomkem naznačené dělení. (Pro převod na procenta výsledek vynásobíme číslem jedna zapsaným jako 100 %.)
    • Příklady:
    • 1/16 = 0,0625 = 6,25 %
    • 1/17 = 0,058823529411764705882352941176470... = 0,05882352941176470 = 5,8823529411764705 %
  • Převod z konečného desetinného zápisu na zlomek: Vzdáleností poslední číslice čísla je dán řád desetinného zlomku, tj. desetiny, setiny, tisíciny apod.; výsledek lze často zjednodušit krácením.
    • Příklad:
    • 0,0125 = 125/10000 = 1/80
  • Převod z periodického desetinného zápisu na zlomek: U tzv. ryze periodických kladných čísel menších než 1, u kterých začíná perioda hned za desetinnou čárkou, lze číslo jako zlomek zapsat tak, že čitatelem budou číslice jedné periody a jmenovatelem tolik devítek, kolik číslic má čitatel; výsledek lze často zjednodušit krácením. Ostatní periodická čísla lze zapsat jako součet čísla s konečným zápisem a desetinného podílu ryze periodického čísla.
    • Příklady:
    • 0,3 = 3/9 = 1/3
    • 0,592 = 592/999 = 16/27
    • 0,64096 = 64/100 + 0,96/1000 = 64/100 + 96/(99·1000) = 63456/99000 = 2644/4125
    • 2,25 = 2 + 25/99 = 198/99 + 25/99 = 223/99
  • Převod z periodického desetinného zápisu pomocí nekonečné řady: Každé periodické číslo se dá rozložit na součet několika jednotlivých částí (př. 1.). Tyto části, které v součtu dají původní číslo, není těžké sečíst pomocí vzorce pro nekonečnou geometrickou řadu (Př. 2):
    • Př. 1.
      •  
    • Př. 2.
      •  
      •  
      •  
  • K převodu periodického čísla se dá využít obou způsobů, první je však na první pohled snazší, druhý ale podává i zdůvodnění "devítkového" jmenovatele.

Historie zlomků

editovat
 
Babylónská destička YBC 7289 (kolem 1700 př. n. l.) ukazující aproximativní vyjádření odmocniny ze 2 jako čísla zapsaného pomocí číslic v desítkové soustavě (znaků pro 1 a 10) a vyjadřující pravděpodobně rozvoj zlomků se základem (jmenovatelem) mocnin 60.[1]

V různých civilizacích z důvodu rozvoje průmyslu a obchodu, architektury, mořeplavby, přírodních a jiných věd vznikla potřeba velkých a obtížných aritmetických výpočtů, což vedlo k většímu rozvoji matematiky. Egypťané používali zlomky i 1000 př. n. l.[2] Skoro všechny zlomky se však převáděly na součty tzv. kmenových zlomků, tj. zlomků s čitatelem rovným jedné.

Reference

editovat
  1. https://www.maa.org/press/periodicals/convergence/the-best-known-old-babylonian-tablet - The Best Known Old Babylonian Tablet?
  2. ZÁVODNÝ, Michal. Využití historie matematiky při výuce na základní škole. 2006 [cit. 2021-02-21]. Masarykova univerzita, Pedagogická fakulta. Dostupné online.

Související články

editovat

Externí odkazy

editovat