Soubor:Hexahedron.jpg
Velikost tohoto náhledu: 538 × 599 pixelů. Jiná rozlišení: 216 × 240 pixelů | 431 × 480 pixelů | 742 × 826 pixelů.
Původní soubor (742 × 826 pixelů, velikost souboru: 51 KB, MIME typ: image/jpeg)
Tento soubor pochází z Wikimedia Commons. Níže jsou zobrazeny informace, které obsahuje jeho tamější stránka s popisem souboru. |
Popis
PopisHexahedron.jpg |
English: A Hexahedron (cube). A regular polyhedron. |
Zdroj | see below |
Autor | Původně soubor načetl Cyp na projektu Wikipedie v jazyce angličtina |
K tomuto obrázku existuje vektorová verze (v SVG). Pokud je lepší, používejte raději tu.
File:Hexahedron.jpg → File:Hexahedron.svg
Podrobnější informace o vektorové grafice najdete na stránce Commons:Transition to SVG. Také si můžete přečíst informace o podpoře formátu SVG v MediaWiki.
|
Licence
Tento dokument smí být kopírován, šířen nebo upravován podle podmínek Svobodné licence GNU pro dokumenty verze 1.2 nebo libovolné vyšší verze publikované nadací Free Software Foundation. Dokument nemá neměnné části ani texty na předním či zadním přebalu. Kopie textu licence je k dispozici v oddíle nazvaném GNU Free Documentation License.http://www.gnu.org/copyleft/fdl.htmlGFDLGNU Free Documentation Licensetruetrue |
Tento soubor podléhá licenci Creative Commons Uveďte autora-Zachovejte licenci 3.0 Unported. | ||
| ||
Tato licenční šablona byla k tomuto souboru přidána v rámci změny licencování.http://creativecommons.org/licenses/by-sa/3.0/CC BY-SA 3.0Creative Commons Attribution-Share Alike 3.0truetrue |
Povray src code
Hexahedron, made by me using POV-Ray, see en:User:Cyp/Poly.pov for source.}}
//Picture *** Use flashiness=1 !!! ***
//
// +w1024 +h1024 +a0.3 +am2
// +w512 +h512 +a0.3 +am2
//
//Movie *** Use flashiness=0.25 !!! ***
//
// +kc +kff120 +w256 +h256 +a0.3 +am2
// +kc +kff60 +w256 +h256 +a0.3 +am2
//"Fast" preview
// +w128 +h128
#declare notwireframe=1;
#declare withreflection=0;
#declare flashiness=0.25; //Still pictures use 1, animated should probably be about 0.25.
#macro This_shape_will_be_drawn()
//PLATONIC SOLIDS ***********
//tetrahedron() #declare rotation=seed(1889/*1894*/);
//hexahedron() #declare rotation=seed(7122);
//octahedron() #declare rotation=seed(4193);
//dodecahedron() #declare rotation=seed(4412);
//icosahedron() #declare rotation=seed(7719);
//weirdahedron() #declare rotation=seed(7412);
//ARCHIMEDIAN SOLIDS ***********
//cuboctahedron() #declare rotation=seed(1941);
//icosidodecahedron() #declare rotation=seed(2241);
//truncatedtetrahedron() #declare rotation=seed(8717);
//truncatedhexahedron() #declare rotation=seed(1345);
//truncatedoctahedron() #declare rotation=seed(7235);
//truncateddodecahedron() #declare rotation=seed(9374);
//truncatedicosahedron() #declare rotation=seed(1666);
//rhombicuboctahedron() #declare rotation=seed(6124);
//truncatedcuboctahedron() #declare rotation=seed(1156);
//rhombicosidodecahedron() #declare rotation=seed(8266);
//truncatedicosidodecahedron() #declare rotation=seed(1422);
//snubhexahedron(-1) #declare rotation=seed(7152);
//snubhexahedron(1) #declare rotation=seed(1477);
//snubdodecahedron(-1) #declare rotation=seed(5111);
//snubdodecahedron(1) #declare rotation=seed(8154);
//CATALAN SOLIDS ***********
//rhombicdodecahedron() #declare rotation=seed(7154);
//rhombictriacontahedron() #declare rotation=seed(1237);
//triakistetrahedron() #declare rotation=seed(7735);
//triakisoctahedron() #declare rotation=seed(5354);
//tetrakishexahedron() #declare rotation=seed(1788);
//triakisicosahedron() #declare rotation=seed(1044);
//pentakisdodecahedron() #declare rotation=seed(6100);
//deltoidalicositetrahedron() #declare rotation=seed(5643);
//disdyakisdodecahedron() #declare rotation=seed(1440);
//deltoidalhexecontahedron() #declare rotation=seed(1026);
//disdyakistriacontahedron() #declare rotation=seed(1556);
//pentagonalicositetrahedron(-1) #declare rotation=seed(7771);
//pentagonalicositetrahedron(1) #declare rotation=seed(3470);
//pentagonalhexecontahedron(-1) #declare rotation=seed(1046);
//pentagonalhexecontahedron(1) #declare rotation=seed(1096);
//PRISMS, ANTIPRISMS, ETC... ***********
//rprism(5) #declare rotation=seed(6620);
antiprism(5) #declare rotation=seed(6620);
//bipyramid(5) #declare rotation=seed(6620);
//trapezohedron(17) #declare rotation=seed(6620);
#end
#declare tau=(1+sqrt(5))/2;
#declare sq2=sqrt(2);
#declare sq297=sqrt(297);
#declare xi=(pow(sq297+17,1/3)-pow(sq297-17,1/3)-1)/3;
#declare sqweird=sqrt(tau-5/27);
#declare ouch=pow((tau+sqweird)/2,1/3)+pow((tau-sqweird)/2,1/3);
#declare alfa=ouch-1/ouch;
#declare veta=(ouch+tau+1/ouch)*tau;
#macro tetrahedron()
addpointsevensgn(<1,1,1>)
autoface()
#end
#macro hexahedron()
addpointssgn(<1,1,1>,<1,1,1>)
autoface()
#end
#macro octahedron()
addevenpermssgn(<1,0,0>,<1,0,0>)
autoface()
#end
#macro dodecahedron()
addpointssgn(<1,1,1>,<1,1,1>)
addevenpermssgn(<0,1/tau,tau>,<0,1,1>)
autoface()
#end
#macro icosahedron()
addevenpermssgn(<0,1,tau>,<0,1,1>)
autoface()
#end
#macro weirdahedron()
addpermssgn(<1,2,3>,<1,1,1>)
autoface()
#end
#macro cuboctahedron()
addevenpermssgn(<0,1,1>,<0,1,1>)
autoface()
#end
#macro icosidodecahedron()
addevenpermssgn(<0,0,2*tau>,<0,0,1>)
addevenpermssgn(<1,tau,1+tau>,<1,1,1>)
autoface()
#end
#macro truncatedtetrahedron()
addevenpermsevensgn(<1,1,3>)
autoface()
#end
#macro truncatedhexahedron()
addevenpermssgn(<sq2-1,1,1>,<1,1,1>)
autoface()
#end
#macro truncatedoctahedron()
addpermssgn(<0,1,2>,<0,1,1>)
autoface()
#end
#macro truncateddodecahedron()
addevenpermssgn(<0,1/tau,2+tau>,<0,1,1>)
addevenpermssgn(<1/tau,tau,2*tau>,<1,1,1>)
addevenpermssgn(<tau,2,1+tau>,<1,1,1>)
autoface()
#end
#macro truncatedicosahedron()
addevenpermssgn(<0,1,3*tau>,<0,1,1>)
addevenpermssgn(<2,1+2*tau,tau>,<1,1,1>)
addevenpermssgn(<1,2+tau,2*tau>,<1,1,1>)
autoface()
#end
#macro rhombicuboctahedron()
addevenpermssgn(<1+sq2,1,1>,<1,1,1>)
autoface()
#end
#macro truncatedcuboctahedron()
addpermssgn(<1,1+sq2,1+sq2*2>,<1,1,1>)
autoface()
#end
#macro rhombicosidodecahedron()
addevenpermssgn(<1,1,1+2*tau>,<1,1,1>)
addevenpermssgn(<tau,2*tau,1+tau>,<1,1,1>)
addevenpermssgn(<2+tau,0,1+tau>,<1,0,1>)
autoface()
#end
#macro truncatedicosidodecahedron()
addevenpermssgn(<1/tau,1/tau,3+tau>,<1,1,1>)
addevenpermssgn(<2/tau,tau,1+2*tau>,<1,1,1>)
addevenpermssgn(<1/tau,1+tau,3*tau-1>,<1,1,1>)
addevenpermssgn(<2*tau-1,2,2+tau>,<1,1,1>)
addevenpermssgn(<tau,3,2*tau>,<1,1,1>)
autoface()
#end
#macro snubhexahedron(s)
addpermsaltsgn(<1,1/xi,xi>*s)
autoface()
#end
#macro snubdodecahedron(s)
addevenpermsevensgn(<2*alfa,2,2*veta>*s)
addevenpermsevensgn(<alfa+veta/tau+tau,-alfa*tau+veta+1/tau,alfa/tau+veta*tau-1>*s)
addevenpermsevensgn(<-alfa/tau+veta*tau+1,-alfa+veta/tau-tau,alfa*tau+veta-1/tau>*s)
addevenpermsevensgn(<-alfa/tau+veta*tau-1,alfa-veta/tau-tau,alfa*tau+veta+1/tau>*s)
addevenpermsevensgn(<alfa+veta/tau-tau,alfa*tau-veta+1/tau,alfa/tau+veta*tau+1>*s)
autoface()
#end
#macro rhombicdodecahedron()
cuboctahedron() dual()
#end
#macro rhombictriacontahedron()
icosidodecahedron() dual()
#end
#macro triakistetrahedron()
truncatedtetrahedron() dual()
#end
#macro triakisoctahedron()
truncatedhexahedron() dual()
#end
#macro tetrakishexahedron()
truncatedoctahedron() dual()
#end
#macro triakisicosahedron()
truncateddodecahedron() dual()
#end
#macro pentakisdodecahedron()
truncatedicosahedron() dual()
#end
#macro deltoidalicositetrahedron()
rhombicuboctahedron() dual()
#end
#macro disdyakisdodecahedron()
truncatedcuboctahedron() dual()
#end
#macro deltoidalhexecontahedron()
rhombicosidodecahedron() dual()
#end
#macro disdyakistriacontahedron()
truncatedicosidodecahedron() dual()
#end
#macro pentagonalicositetrahedron(s)
snubhexahedron(s) dual()
#end
#macro pentagonalhexecontahedron(s)
snubdodecahedron(s) dual()
#end
#macro rprism(n)
#local a=sqrt((1-cos(2*pi/n))/2);
#local b=0; #while(b<n-.5)
addpointssgn(<sin(2*pi*b/n),cos(2*pi*b/n),a>,<0,0,1>)
#local b=b+1; #end
autoface()
#end
#macro antiprism(n)
#local a=sqrt((cos(pi/n)-cos(2*pi/n))/2);
#local b=0; #while(b<2*n-.5)
addpoint(<sin(pi*b/n),cos(pi*b/n),a>)
#local a=-a; #local b=b+1; #end
autoface()
#end
#macro bipyramid(n)
rprism(n) dual()
#end
#macro trapezohedron(n)
antiprism(n) dual()
#end
#declare points=array[1000];
#declare npoints=0;
#declare faces=array[1000];
#declare nfaces=0;
#macro addpoint(a)
#declare points[npoints]=a;
#declare npoints=npoints+1;
#end
#macro addevenperms(a)
addpoint(a)
addpoint(<a.y,a.z,a.x>)
addpoint(<a.z,a.x,a.y>)
#end
#macro addperms(a)
addevenperms(a)
addevenperms(<a.x,a.z,a.y>)
#end
#macro addpointssgn(a,s)
addpoint(a)
#if(s.x) addpointssgn(a*<-1,1,1>,s*<0,1,1>) #end
#if(s.y) addpointssgn(a*<1,-1,1>,s*<0,0,1>) #end
#if(s.z) addpoint(a*<1,1,-1>) #end
#end
#macro addevenpermssgn(a,s)
addpointssgn(a,s)
addpointssgn(<a.y,a.z,a.x>,<s.y,s.z,s.x>)
addpointssgn(<a.z,a.x,a.y>,<s.z,s.x,s.y>)
#end
#macro addpermssgn(a,s)
addevenpermssgn(a,s)
addevenpermssgn(<a.x,a.z,a.y>,<s.x,s.z,s.y>)
#end
#macro addpointsevensgn(a)
addpoint(a)
addpoint(a*<-1,-1,1>)
addpoint(a*<-1,1,-1>)
addpoint(a*<1,-1,-1>)
#end
#macro addevenpermsevensgn(a)
addevenperms(a)
addevenperms(a*<-1,-1,1>)
addevenperms(a*<-1,1,-1>)
addevenperms(a*<1,-1,-1>)
#end
#macro addpermsaltsgn(a)
addevenpermsevensgn(a)
addevenpermsevensgn(<a.x,a.z,-a.y>)
#end
/*#macro addevenpermssgn(a,s) //Calls addevenperms with, for each 1 in s, a.{x,y,z} replaced with {+,-}a.{x,y,z}
addevenperms(a)
#if(s.x) addevenpermssgn(a*<-1,1,1>,s*<0,1,1>) #end
#if(s.y) addevenpermssgn(a*<1,-1,1>,s*<0,0,1>) #end
#if(s.z) addevenperms(a*<1,1,-1>) #end
#end*/
#macro addface(d,l)
#local a=vnormalize(d)/l;
#local f=1;
#local n=0; #while(n<nfaces-.5)
#if(vlength(faces[n]-a)<0.00001) #local f=0; #end
#local n=n+1; #end
#if(f)
#declare faces[nfaces]=a;
#declare nfaces=nfaces+1;
#end
#end
#macro dual()
#declare temp=faces;
#declare faces=points;
#declare points=temp;
#declare temp=nfaces;
#declare nfaces=npoints;
#declare npoints=temp;
#end
#macro autoface() //WARNING: ONLY WORKS IF ALL EDGES HAVE EQUAL LENGTH
//Find edge length
#declare elength=1000;
#local a=0; #while(a<npoints-.5) #local b=0; #while(b<npoints-.5)
#local c=vlength(points[a]-points[b]); #if(c>0.00001 & c<elength) #local elength=c; #end
#local b=b+1; #end #local a=a+1; #end
//Find planes
//#macro planes()
#local a=0; #while(a<npoints-.5)
#local b=a+1; #while(b<npoints-.5)
#if(vlength(points[a]-points[b])<elength+0.00001) #local c=b+1; #while(c<npoints-.5)
#if(vlength(points[a]-points[c])<elength+0.00001)
#local n=vnormalize(vcross(points[b]-points[a],points[c]-points[a]));
#local d=vdot(n,points[a]);
#if(d<0) #local n=-n; #local d=-d; #end
#local f=1;
#local e=0; #while(e<npoints-.5)
#if(vdot(n, points[e])>d+0.00001) #local f=0; #end
#local e=e+1; #end
#if(f)
#declare ld=d;
addface(n,d) //plane { n, d }
#end
#end
#local c=c+1; #end #end
#local b=b+1; #end
#local a=a+1; #end
#end
This_shape_will_be_drawn()
//Random rotations are (hopefully) equally distributed...
#declare rot1=rand(rotation)*pi*2;
#declare rot2=acos(1-2*rand(rotation));
#declare rot3=(rand(rotation)+clock)*pi*2;
#macro dorot()
rotate rot1*180/pi*y
rotate rot2*180/pi*x
rotate rot3*180/pi*y
#end
//Scale shape to fit in unit sphere
#local b=0;
#local a=0; #while(a<npoints-.5)
#local c=vlength(points[a]); #if(c>b) #local b=c; #end
#local a=a+1; #end
#local a=0; #while(a<npoints-.5)
#local points[a]=points[a]/b;
#local a=a+1; #end
#local a=0; #while(a<nfaces-.5)
#local faces[a]=faces[a]*b;
#local a=a+1; #end
//Draw edges
#macro addp(a)
#declare p[np]=a;
#declare np=np+1;
#end
#local a=0; #while(a<nfaces-.5)
#declare p=array[20];
#declare np=0;
#local b=0; #while(b<npoints-.5)
#if(vdot(faces[a],points[b])>1-0.00001) addp(b) #end
#local b=b+1; #end
#local c=0; #while(c<np-.5)
#local d=0; #while(d<np-.5) #if(p[c]<p[d]-.5)
#local f=1;
#local e=0; #while(e<np-.5) #if(e!=c & e!=d & vdot(vcross(points[p[c]],points[p[d]]),points[p[e]])<0)
#local f=0;
#end #local e=e+1; #end
#if(f)
object {
cylinder { points[p[c]], points[p[d]], .01 dorot() }
pigment { colour <.3,.3,.3> }
finish { ambient 0 diffuse 1 phong 1 }
}
#end #end
#local d=d+1; #end
#local c=c+1; #end
#local a=a+1; #end
/*#local a=0; #while(a<npoints-.5)
#local b=a+1; #while(b<npoints-.5)
#if(vlength(points[a]-points[b])<elength+0.00001)
object {
cylinder { points[a], points[b], .01 dorot() }
pigment { colour <.3,.3,.3> }
finish { ambient 0 diffuse 1 phong 1 }
}
#end
#local b=b+1; #end
#local a=a+1; #end*/
//Draw points
#local a=0; #while(a<npoints-.5)
object {
sphere { points[a], .01 dorot() }
pigment { colour <.3,.3,.3> }
finish { ambient 0 diffuse 1 phong 1 }
}
#local a=a+1; #end
#if(notwireframe)
//Draw planes
object {
intersection {
#local a=0; #while(a<nfaces-.5)
plane { faces[a], 1/vlength(faces[a]) }
#local a=a+1; #end
//planes()
//sphere { <0,0,0>, 1 }
//sphere { <0,0,0>, ld+.01 inverse }
dorot()
}
pigment { colour rgbt <.8,.8,.8,.4> }
finish { ambient 0 diffuse 1 phong flashiness #if(withreflection) reflection { .2 } #end }
//interior { ior 1.5 }
photons {
target on
refraction on
reflection on
collect on
}
}
#end
// CCC Y Y PP
// C Y Y P P
// C Y PP
// C Y P
// CCC Y P
#local a=0;
#while(a<11.0001)
light_source { <4*sin(a*pi*2/11), 5*cos(a*pi*6/11), -4*cos(a*pi*2/11)> colour (1+<sin(a*pi*2/11),sin(a*pi*2/11+pi*2/3),sin(a*pi*2/11+pi*4/3)>)*2/11 }
#local a=a+1;
#end
background { color <1,1,1> }
camera {
perspective
location <0,0,0>
direction <0,0,1>
right x/2
up y/2
sky <0,1,0>
location <0,0,-4.8>
look_at <0,0,0>
}
global_settings {
max_trace_level 40
photons {
count 200000
autostop 0
}
}
Položky vyobrazené v tomto souboru
zobrazuje
d\u00edlo chr\u00e1n\u011bn\u00e9 autorsk\u00fdm pr\u00e1vem<\/a>"}},"text\/plain":{"cs":{"P6216":"d\u00edlo chr\u00e1n\u011bn\u00e9 autorsk\u00fdm pr\u00e1vem"}}}}" class="wbmi-entityview-statementsGroup wbmi-entityview-statementsGroup-P6216 oo-ui-layout oo-ui-panelLayout oo-ui-panelLayout-framed">
GNU Free Documentation License verze 1.2 nebo nov\u011bj\u0161\u00ed<\/a>"}},"text\/plain":{"cs":{"P275":"GNU Free Documentation License verze 1.2 nebo nov\u011bj\u0161\u00ed"}}},"{\"value\":{\"entity-type\":\"item\",\"numeric-id\":14946043,\"id\":\"Q14946043\"},\"type\":\"wikibase-entityid\"}":{"text\/html":{"cs":{"P275":"Creative Commons Uve\u010fte p\u016fvod-Zachovejte licenci 3.0 Unported<\/a>"}},"text\/plain":{"cs":{"P275":"Creative Commons Uve\u010fte p\u016fvod-Zachovejte licenci 3.0 Unported"}}}}" class="wbmi-entityview-statementsGroup wbmi-entityview-statementsGroup-P275 oo-ui-layout oo-ui-panelLayout oo-ui-panelLayout-framed">
Historie souboru
Kliknutím na datum a čas se zobrazí tehdejší verze souboru.
Datum a čas | Náhled | Rozměry | Uživatel | Komentář | |
---|---|---|---|---|---|
současná | 6. 1. 2005, 21:28 | 742 × 826 (51 KB) | Kjell André | A Hexahedron (cube). A regular polyhedron. |
Využití souboru
Tento soubor používají následující 3 stránky:
Globální využití souboru
Tento soubor využívají následující wiki:
- Využití na ar.wikipedia.org
- Využití na ary.wikipedia.org
- Využití na az.wikipedia.org
- Využití na bg.wikipedia.org
- Využití na ca.wikipedia.org
- Využití na da.wikipedia.org
- Využití na de.wikipedia.org
- Využití na en.wikipedia.org
- Využití na en.wikibooks.org
- Využití na en.wikiversity.org
- Využití na en.wiktionary.org
- Využití na eo.wikipedia.org
- Využití na es.wikipedia.org
- Využití na eu.wikipedia.org
- Využití na fr.wikipedia.org
- Využití na fr.wiktionary.org
- Využití na gl.wikipedia.org
- Využití na he.wikipedia.org
- Využití na he.wikibooks.org
- Využití na he.wiktionary.org
Zobrazit další globální využití tohoto souboru.
Citováno z „https://cs.wikipedia.org/wiki/Soubor:Hexahedron.jpg“