V dalším předpokládejme, že plocha je podmnožina třírozměrného euklidovského prostoru. Můžeme ji definovat jako množinu všech bodů, jejichž souřadnice vyhovují rovnici
- ,
kde je funkce, která má v každém bodě spojitou parciální derivaci alespoň prvního řádu a na žádné otevřené množině není identicky rovna nule.
Body plochy, v nichž je alespoň jedna z těchto parciálních derivací nenulová, se nazývají regulární body plochy, zatímco body, v nichž jsou všechny parciální derivace prvního řádu nulové označujeme jako singulární body. Příkladem singulárního bodu je např. vrchol kužele.
Singulární bod, v němž funkce má alespoň jednu nenulovou parciální derivaci druhého řádu, se nazývá kónický bod plochy.
Plocha určená svojí normálou se označuje jako orientovaná plocha.
Rovnici plochy lze vyjádřit v různých tvarech.
Implicitní rovnice plochy má tvar
-
Uvažujme plochu, jejíž souřadnice jsou vyjádřeny soustavou rovnic
-
-
-
Tato soustava rovnic představuje parametrické vyjádření plochy, přičemž jsou parametry plochy. Každou dvojici z určitého oboru nazýváme bodem plochy. Předpokládáme přitom, že tyto rovnice jsou na spojité a mají spojité nebo po částech spojité parciální derivace prvního řádu podle a .
Pokud lze předchozí rovnice plochy převést na tvar
- ,
pak hovoříme o explicitní rovnici plochy.
Vztahy mezi normálou plochy , rádiusvektorem a jejich derivacemi určují tzv. základní rovnice plochy. Tyto rovnice lze pro plochu určenou uvést v různých tvarech.
Weingartenovy rovnice plochy určují vztahy mezi derivacemi vektorů a .
-
-
-
-
kde jsou základní veličiny plochy prvního řádu a jsou základní veličiny plochy druhého řádu.
Gaussovy rovnice plochy umožňují určit druhou derivaci polohového vektoru .
-
-
-
kde jsou základní veličiny plochy prvního řádu a jsou základní veličiny plochy druhého řádu.
Codazziho (nebo také Mainardiho) rovnice plochy určují vztahy mezi základními veličinami plochy prvního řádu a základními veličinami plochy druhého řádu .
-
-