

CS 251: Bitcoin and Cryptocurrencies Fall 2016

Final Exam

● The exam is open book and open notes.
● You have 2.5 hours.
● Please answer all five questions. All questions are weighted equally.
● The exam is open book and open computer. You may use course notes and documents

that you have stored on a laptop, ​but you may NOT use the network connection on

your laptop in any way, especially not to search the web or communicate with a

friend.

● You are bound by the Stanford honor code not to give or receive unpermitted aid.

Congrats on making it to the end of CS 251!

Question 1​: Short-answer questions
A. Explain why it is computationally infeasible for anyone to generate a Bitcoin transaction that

references its own output as an input.

B. One early proposal to mitigate temporary block withholding (selfish mining) was to have
Bitcoin nodes choose between competing blocks by mining on top of whichever block has the
lowest hash value. Describe why this is not a good solution.

C. Consider the following Solidity function contained in a Ethereum contract:

 function foo(uint256 x, uint256 y) {
 while (uint256(sha3(x)) != y)
 x++;
 }
Using an x and a y for which this function never terminates, explain how a malicious miner
could use this function to waste other miners’ resources, without spending any of its own
resources.

D. You’re consulting for a big-box retail store who want to implement their gift card system using
blockchains. You’re considering either using colored coins or using an Ethereum contract.
Name one advantage each approach has over the other.

E. Suppose that you want to generate each student’s draw number for the Stanford housing

lottery as H(studentID || B​i ​) where B​i is the ​i​ th block header in the Bitcoin blockchain. To
make the scheme more secure, your friend suggests using H(studentID || B​i-1 || B​i ​) instead.
What does this buy you in terms of protecting the scheme against manipulation by miners?

F. Bob posts the following wallet contract to Ethereum to manage his personal finances:

 contract BobWallet {
 function pay(address dest, uint amount) {
 if (tx.origin == HardcodedBobAddress)
 dest.send(amount);
 }
 }
Suppose Mallory can trick Bob into calling a method on a contract she controls. Explain how
Mallory can transfer all of Bob’s money to her own account.

G. When the ZCash genesis block was created, among the extra data the block header included

was the hash of a Bitcoin block that was mined that same day. Why did the ZCash creators
include this? What were they trying to prove?

H. Recall that Bitcoin uses SHA256​2 ​as its proof of work function and that the current difficulty is

set to approximately D = 2​70​. Suppose Alice discovers a way to solve the Bitcoin proof-of-work
problem in expected time D/2​20​, but only for D < 2​80​. For D ≥ 2​80​, the best algorithm is still
brute-force, taking expected time D. What is the best strategy for Alice to capitalize on this
discovery?

Question 2: ​(Post-block reward mining strategy) Bitcoin’s rules call for for fixed coinbase block
rewards to disappear over time and be replaced by transaction fees as the sole source of revenue for
miners. In this question we’ll explore the implications of this transition on miner behavior.

● We’ll assume that the block size is increased so that miners can always include all available
transactions in a block (e.g. assume blocks are essentially infinite).

● We’ll also assume that new transactions are broadcast at a constant rate, all including the
same transaction fee. This means that the value of any block is directly proportional to the
time since the last block was found. We’ll say that the block reward is R(​t​) = ​rt where ​t is the
time since the last block, and ​r​ is a constant.

● We’ll assume that all miners have the same cost to compute block hashes (e.g. to pay for the
electricity for their mining hardware). We’ll say the marginal cost of performing ​d​ hashes is ​c​ ,
where ​d is the current block difficulty (e.g. ​d​ ≅2​69​). We’ll also assume that miners can turn their
equipment on and off instantaneously and pay nothing when it’s off.

Given these assumptions, miners clearly will not want to mine immediately after a block is found, as
the value starts at 0, because the transaction pool is empty.

a. How long will miners wait after a block is found before turning on their hardware?
b. Assume that the initial difficulty level ​d​ 0 is set to ensure the average block time would be

b=​ 10 minutes if all miners were mining constantly. After 2016 blocks using the above strategy,
what will the new difficulty ​d​ 1 be (in terms of ​b​ , ​c,​ and r​)? Assume the total amount of mining
hardware is not changing.

c. Will ​d​ 2 change again in the next round (assuming all of the parameters stay the same) or will it
stay the same as ​d​ 1​?

d. Another possible mining strategy is the following: immediately after a block is found, it is not
profitable to attempt to find a new block (as the transaction pool is empty) but it is profitable
to try to re-mine the previous block, mining ε fewer transactions so that mining on top of
this new block will be more attractive than mining on top of the original block. Suppose you
are the only miner executing this strategy. Suppose the previous block was found after ​t​ 0 ​time
(so that the block reward for the previous is rt​0​), and t​1 is the time since the previous block
was found. For what value of t​1 should you switch from trying to steal the previous block, to
trying to mine a fresh block?

Question 3​: ​(Centralized blockchains) Consider two designs for a centralized blockchain protocol
maintained by ​N​ designated parties with signing keys ​K​ 1​... ​K​ N​ :

A. Rotating signers​ . Block ​i​ must be signed by the ​j​ th key ​K​ j​ where ​j​ = ​i​ mod ​N​ . Each signer has
complete control of which valid transactions appear in a block that it signs. Invalid blocks are
ignored and forked around, as with the Bitcoin blockchain.

B. Designated block generator​ . Every block is first signed by a designated party called a ​block
generator ​ (using a special signing key ​K​ 0​). The block must then be further confirmed by a
quorum ​t​ of the ​N​ signers using a threshold signature scheme (assume t>1).

Only properly signed blocks are posted on the blockchain. For each of the following properties, briefly
compare the two schemes (A) and (B). Where applicable, describe what has to happen (and how
many parties need to misbehave) to violate the property.

1. Liveness: what does it take for the system to become unable to post further blocks.
2. Consistency: ensuring that everyone agrees on the current state of the blockchain.
3. The work to generate a new block
4. The work to verify the entire blockchain
5. Censorship resistance

Question 4​:​ (cross-chain exchange) OP_CHECKLOCKTIMEVERIFY is a new Bitcoin instruction (added via
soft fork) which examines the top item on the stack and, if it is greater than the current block’s
timestamp, halts execution with an error. If not, it is a NOP (it is also a NOP for any old client that has 1

not adopted the soft fork). Consider the following Bitcoin script (assume Bob gets to pick ​Y​):
IF

<t1>
CHECKLOCKTIMEVERIFY
DROP //Needed to discard t1 from the stack
<Alice's public key>
CHECKSIG

ELSE
OP_SHA256
<Y>
EQUALVERIFY
<Bob's public key>
CHECKSIG

ENDIF
A. Explain the conditions under which this transaction output can be spent.

B. How could you achieve a similar effect with Bitcoin prior to the availability of

OP_CHECKLOCKTIMEVERIFY? What were the downsides of the old way?

C. Show how Alice and Bob can use this transaction to achieve ​atomic exchange​ of bitcoins for

ether. Alice will send her bitcoins to a transaction output with the above script. Bob will send

his ether to a special (one-time use) smart contract sketched below. Either Bob should end up

with Alice’s bitcoins and Alice with Bob’s ether, or neither should change hands.

contract CrossChain {
 uint256 t2, y;
 address alice, bob;
 void AliceRedeem(uint256 x) {} //implement this
 void BobRedeem() {} //implement this
}

Assume the storage variables are suitably initialized, implement the two functions

AliceRedeem ​ and ​BobRedeem ​. Neither should be longer than 5 lines.

Hint​: you’ll want to use block.timestamp to get the timestamp of the current block

D. Assume Bob gets to pick ​Y​ . How should he choose it?

E. Assume Bob gets to pick ​Y​ . Should Alice fund her transaction first or should Bob fund the

CrossChain contract first?

F. Assume Bob gets to pick ​Y​ . Should the timestamp ​t​ 1​ be greater than, less than, or equal to the

timestamp ​t​ 2​? If they are different, how big should the difference be?

1 It is possible to use OP_CHECKLOCKTIMEVERIFY with either a block number or timestamp, but for here
we’ll just assume we’re using a timestamp.

G. Congrats on implementing atomic exchange! Given that you can do a version of this between

any two cryptocurrencies with a powerful enough scripting language, are 2-way pegged

sidechains dead? Why or why not?

Question 5​: ​(Ethereum programming) The following Solidity contract implements a distributed ticket
sales system. Anybody can create an event (specifying the initial price and number of tickets).
Anybody can then purchase one of the initial tickets or sell those tickets peer-to-peer. At the event,
gate agents will check that each attendee is listed in the final attendees list on the blockchain.

Surprise! This contract is poorly implemented. Identify at least 5 different problems that cause a

specific functionality loss or security vulnerability (not simply things that are generally bad practice).

For each problem, state what the implications are (e.g. how it can be exploited or what intended

functionality won’t work) as well as how it could be fixed.
pragma solidity ^0.4.0;
contract TicketDepot {

 struct Event{
 address owner;
 uint64 ticketPrice;
 uint16 ticketsRemaining;
 mapping(uint16 => address) attendees;
 }

 struct Offering{
 address buyer;
 uint64 price;
 uint256 deadline;
 }

 uint16 numEvents;
 address owner;
 uint64 transactionFee;
 mapping(uint16 => Event) events;
 mapping(bytes32 => Offering) offerings;

 function ticketDepot(uint64 _transactionFee){
 transactionFee = _transactionFee;
 owner = tx.origin;
 }

 function createEvent(uint64 _ticketPrice, uint16
_ticketsAvailable) returns (uint16 eventID){

 numEvents++;
 events[numEvents].owner = tx.origin;
 events[numEvents].ticketPrice = _ticketPrice;
 events[numEvents].ticketsRemaining = _ticketsAvailable;
 return numEvents;
 }

 modifier ticketsAvailable(uint16 _eventID){
 _;
 if (events[_eventID].ticketsRemaining <= 0) throw;
 }

 function buyNewTicket(uint16 _eventID, address _attendee)
ticketsAvailable(_eventID) payable returns (uint16 ticketID){
 if (msg.sender == events[_eventID].owner || msg.value >
events[_eventID].ticketPrice + transactionFee){
 ticketID = events[_eventID].ticketsRemaining--;
 events[_eventID].attendees[ticketID] = _attendee;
 events[_eventID].owner.send(msg.value - transactionFee);
 return ticketID;
 }
 }

 function offerTicket(uint16 _eventID, uint16 _ticketID, uint64
_price, address _buyer, uint16 _offerWindow) {
 if (msg.value < transactionFee) throw;
 bytes32 offerID = sha3(_eventID+_ticketID);
 if (offerings[offerID] != 0) throw;
 offerings[offerID].buyer = _buyer;
 offerings[offerID].price = _price;
 offerings[offerID].deadline = block.number + _offerWindow;
 }

 function buyOfferedTicket(uint16 _eventID, uint16 _ticketID,
address _newAttendee) payable{
 bytes32 offerID = sha3(_eventID+_ticketID);
 if (msg.value > offerings[offerID].price &&
 block.number < offerings[offerID].deadline &&
 (msg.sender == offerings[offerID].buyer ||
 offerings[offerID].buyer == 0)) {

 events[_eventID].attendees[_ticketID]
 .send(offerings[offerID].price);

 events[_eventID].attendees[_ticketID] = _newAttendee;
 delete offerings[offerID];
 }
 }
}

