[go: up one dir, main page]

kerastuneR: Interface to 'Keras Tuner'

'Keras Tuner' <https://keras-team.github.io/keras-tuner/> is a hypertuning framework made for humans. It aims at making the life of AI practitioners, hypertuner algorithm creators and model designers as simple as possible by providing them with a clean and easy to use API for hypertuning. 'Keras Tuner' makes moving from a base model to a hypertuned one quick and easy by only requiring you to change a few lines of code.

Version: 0.1.0.7
Imports: reticulate, tensorflow, rstudioapi, plotly, data.table, RJSONIO, rjson, tidyjson, dplyr, echarts4r, crayon, magick
Suggests: keras3, knitr, tfdatasets, testthat, purrr, rmarkdown
Published: 2024-04-13
DOI: 10.32614/CRAN.package.kerastuneR
Author: Turgut Abdullayev [aut, cre], Google Inc. [cph]
Maintainer: Turgut Abdullayev <turqut.a.314 at gmail.com>
BugReports: https://github.com/EagerAI/kerastuneR/issues/
License: Apache License 2.0
URL: https://github.com/EagerAI/kerastuneR/
NeedsCompilation: no
SystemRequirements: TensorFlow >= 2.0 (https://www.tensorflow.org/)
Materials: README
CRAN checks: kerastuneR results

Documentation:

Reference manual: kerastuneR.pdf
Vignettes: Bayesian Optimization
HyperModel subclass
Introduction to kerastuneR
MNIST hypertuning
KerasTuner best practices

Downloads:

Package source: kerastuneR_0.1.0.7.tar.gz
Windows binaries: r-devel: kerastuneR_0.1.0.7.zip, r-release: kerastuneR_0.1.0.7.zip, r-oldrel: kerastuneR_0.1.0.7.zip
macOS binaries: r-release (arm64): kerastuneR_0.1.0.7.tgz, r-oldrel (arm64): kerastuneR_0.1.0.7.tgz, r-release (x86_64): kerastuneR_0.1.0.7.tgz, r-oldrel (x86_64): kerastuneR_0.1.0.7.tgz
Old sources: kerastuneR archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=kerastuneR to link to this page.